
An Invitation to

and Mathematical
Typesetting

Dan Romik

About the author

Dan Romik is a professor of mathematics at the University of California,
Davis. His book The Surprising Ma thema tics of Longest Increa sing
Subsequences was published by Cambridge University Press in 2015. You
can learn more about him at https://www.math.ucdavis.edu/~romik/

Created with
Copyright © 2022 Dan Romik

https://www.math.ucdavis.edu/~romik/

Table of Contents

Preface . 4

Part I: Mathematical typesetting and 5

Chapter 1: Introduction . 6

Chapter 2: The nine design principles of 18

Chapter 3: Future plans . 31

Chapter 4: Summary and a call for help 34

Part II: Version 1.1.1 User Manual 36

About . 37

About this help guide . 38

User Manual table of contents 39

version history and changelog 210

Index of commands and keywords 212

Preface

In late 2019 I embarked on what could be described without excessive
hyperbole as a fool’s errand: the development of a new, feature-complete
software system for mathematical typesetting. This eventually turned into
the desktop application and content specification language,
currently at Version 1.1.1.

This book presents the current state of the project, as well as my vision
for why it is needed and what it should become in the future. The book is
part manifesto, part status report, part user manual, and (I expect) part
semi-coherent ramblings that will distract you from more important work.

The book is aimed at people with an interest in mathematical typesetting
and where it is headed. If you are a user of LaTeX or another
mathematical typesetting system and are curious about software solutions
that may make your life easier, my goal is to tell you about , why
I created it, and what work still remains to make it a more complete
solution for mathematical writers.

The book is divided into two parts. The first part is written as a kind of
“manifesto” that gives a detailed accounting of my rationale and thought
process in creating . The second part is the user
manual, which gives a full description of the software’s current features
and how to use them.

If you have any comments or suggestions on this book or on , I
would love to hear from you!

Dan Romik
Berkeley, September 2022

hatter@madhat.design
https://madhat.design

https://madhat.design/download/
https://madhat.design/download/
https://madhat.design/download/
mailto:hatter@madhat.design
https://madhat.design

Pa rt I

Mathematical typesetting
and

An Invitation to MadHat and Mathematical Typesetting 5

Chapter 1: Introduction

1.1 The importance of mathematical typesetting

Millions of people around the world regularly use mathematics in their
work, and communicate mathematical ideas to others. The visual
language and notation of mathematics — equations, formulas,
mathematical special symbols, etc — form the basic mechanism for such
communications. However, mathematical notation is notoriously complex,
being a two-dimensional writing system, and standard software tools
such as word processors, presentation applications, email software, etc,
which facilitate written communication and are used by essentially all
members of our technology-driven society, in many cases lack the features
that make it practical to include mathematical content in the documents
one is composing.

For this reason, starting in the late 1970s, specialized software tools and
formats have been developed for the specification and typesetting of
mathematical content. I will survey these tools and the advantages they
offer in the next section. The use of such tools, while fairly widespread
among professional mathematicians and other technically-minded
communicators of mathematics, remains rather limited from the
perspective of the general population, or even the mathematically-literate
portion of it.

I see this as a problem on several levels. First, it is a first-order
economic problem. By this I mean that the scientific publishing
industry, which relies in a critical way on the ability to efficiently publish
content containing large amounts of mathematics, is a $10 billion a
year industry. While this industry is doing fine using existing tools,
those tools are heavily geared towards the “traditional” publishing of

An Invitation to MadHat and Mathematical Typesetting 6

https://www.ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1/S0273-0979-1979-14598-1.pdf
https://www.ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1/S0273-0979-1979-14598-1.pdf
https://www.ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1/S0273-0979-1979-14598-1.pdf
https://www.ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1/S0273-0979-1979-14598-1.pdf
https://www.ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1/S0273-0979-1979-14598-1.pdf
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/
https://www.simbainformation.com/Global-Scientific-Technical-Publishing-14784500/

bound volumes of printed paper, or their electronic equivalents. Seeing as
how a large amount of content is these days presented using newer,
non-traditional modalities of communication — e.g., videos, interactive
apps, and more — it is not a stretch of the imagination to suppose that
improvements to the software tools that facilitate the composition of
documents with mathematical content could well lead to a dramatic
growth in the amount (and quality) of mathematically-oriented content
created and presented using those modalities. Naturally, some economic
benefits could result from such a process.

Second, it is a second-order economic problem. By this I mean, there
are economic benefits of a more elusive or indirect nature that could
result from an improvement in people’s ability to create and communicate
mathematical content efficiently. Whenever people communicate better,
they work better together, and can achieve more: more technologies and
products developed and brought to market, more new inventions dreamed
up, etc. These effects are impossible to quantify, but they are real.

Third, it is a problem for STEM (Science, Technology,
Engineering and Mathematics) education. Communicating
mathematical ideas is at the heart of a STEM education, and this
communication takes place between professors and students, students and
professors, and students and other students. And while professors are
usually proficient enough with the existing software tools to prepare
well-formatted electronic documents — lecture notes, homework
assignments, etc — containing mathematical content, many students lack
those technical skills and are constrained to writing their course notes
and assignments by hand. This is an unnecessary barrier to efficient
studying and communication.

(Again, I should stress that this supposed “problem” isn’t causing the sky
to fall by any means; the current system is working fine, but one can still
imagine things being better — particularly when comparing the situation
in STEM with other disciplines like the humanities, where handwritten

An Invitation to MadHat and Mathematical Typesetting 7

https://www.khanacademy.org
https://apps.apple.com/us/app/incredible-numbers/id824146218
https://apps.apple.com/us/app/incredible-numbers/id824146218
https://apps.apple.com/us/app/incredible-numbers/id824146218

class assignments are essentially unheard of these days, and where it is
very practical for students to take real-time notes on their laptops or
tablets while sitting in class.)

Fourth, it is a problem for STEM research. Again, as with the
discussion of the economics of technical innovations above, the point is
that improvements to communication are likely to yield at least indirect
dividends in the research output of STEM researchers and scholars. As
one example, the online mathematics research community
MathOverflow relies on the MathJax typesetting engine for inserting
mathematical content into a post. The availability of such a means of
communication for research mathematicians has been a real boon to
research, and one can easily imagine that a further improvement to this
system could allow researchers to communicate even more easily with
each other, leading to new collaborations and research discoveries that
might not have happened otherwise.

Last, and perhaps least importantly (but still somewhat importantly, at
least for me personally and I think for many other people), it is a
cultural problem. The issue is that in today’s technology landscape,
mathematical content is relegated to the status of a second-class citizen.
While non-mathematical textual content is completely standardized and
supported by the most widely used software systems (web browsers, word
processors, email software, instant messaging applications, etc), anyone
wishing to communicate mathematical content typically has to resort to
less standard tools, and/or to make assumptions about which tools the
recipient of the content has access to, which typesetting languages they
are familiar with, etc. As a small example, when I communicate by email
with other mathematicians, we often discuss mathematics using LaTeX
code embedded in the email, which we “compile” in our heads while
reading and writing.

For the many people who use mathematics and discuss it regularly, this is
a frustrating state of affairs. Some might argue that this is exactly how

An Invitation to MadHat and Mathematical Typesetting 8

mathoverflow.net
https://meta.mathoverflow.net/questions/617/best-of-mathoverflow-or-papers-inspired-by-mathoverflow
https://meta.mathoverflow.net/questions/617/best-of-mathoverflow-or-papers-inspired-by-mathoverflow
https://meta.mathoverflow.net/questions/617/best-of-mathoverflow-or-papers-inspired-by-mathoverflow
https://meta.mathoverflow.net/questions/617/best-of-mathoverflow-or-papers-inspired-by-mathoverflow
https://meta.mathoverflow.net/questions/617/best-of-mathoverflow-or-papers-inspired-by-mathoverflow

things should be, given that mathematics is “niche” and not used by
everyone. Well, let them argue that; I argue the opposite: everyone should
be able to communicate mathematics easily, using highly polished
software that is on par with anything else we have come to expect these
days from our apps and operating systems. Think about it: doesn’t
mathematical content deserve to get at least as much love and respect
from software developers as, say, emoji, animoji, memoji (or any other
moji)?

Indeed, the language of mathematics is more universal than any
particular spoken language, and is appreciated and used by millions of
people around the world. Popular YouTube channels such as
Numberphile and 3Blue1Brown covering mathematical content have
racked up hundreds of millions of views. The Khan Academy has
produced content used by over 70 million people (despite its videos using
handwritten mathematical formulas in a relatively traditional lecture
style). Are such forms of mathematical content “niche”? To me, the
argument is clear that this type of content deserves to be well-supported
by software tools.

(Lastly, I should note that I am far from the only person to consider the
importance of this issue: standards-developing bodies such as the
Unicode Consortium and the World Wide Web Foundation have
been working for decades towards the goal of promoting the incorporation
of mathematical content into digital communication standards, for
exactly the same reasons.)

The problems I outlined above motivated me to develop a software
system, called , that tries to improve on the current state of the
art in mathematical writing systems. In this part of the book I will offer
more details on what does, what it is meant to ultimately do,
and why it could be an improvement on existing tools.

I’ll start by describing the mathematical typesetting tools that are
currently available. After that I’ll discuss what are some of the issues

An Invitation to MadHat and Mathematical Typesetting 9

https://en.wikipedia.org/wiki/Emoji
https://en.wikipedia.org/wiki/Implementation_of_emojis#Apple
https://en.wikipedia.org/wiki/Implementation_of_emojis#Apple
https://en.wikipedia.org/wiki/Implementation_of_emojis#Apple
https://www.youtube.com/c/numberphile
https://www.youtube.com/c/3blue1brown/
https://www.khanacademy.org
https://www.khanacademy.org
https://www.khanacademy.org
http://www.unicode.org/reports/tr25/tr25-15.pdf
http://www.unicode.org/reports/tr25/tr25-15.pdf
http://www.unicode.org/reports/tr25/tr25-15.pdf
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/

with these tools and why we need new ones. Finally, I’ll explain how
aims to meet the need for new tools.

1.2 The current state of mathematical typesetting

The current landscape of tools for mathematical typesetting is heavily
dominated by TeX, LaTeX and their descendant systems. Below I’ve
listed the main available tools and technologies, with relevant links. (This
list is probably incomplete; if you are aware of any significant items I’ve
missed, please let me know.)

Typesetting engines

• TeX (Wikipedia page)

• LaTeX (Wikipedia page)

• ConTeXt (Wikipedia page)

• XeTeX (Wikipedia page)

• LuaTeX (Wikipedia page)

Mathematics on the Web

• MathJax (Wikipedia page)

• KaTeX (Wikipedia page)

• MathML (Wikipedia page)

• Overleaf (Wikipedia page)

• Mathematics markup on Wikipedia

• Unicode support for mathematics

TeX/LaTeX front ends

An Invitation to MadHat and Mathematical Typesetting 10

https://www.tug.org
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/TeX
https://latex-project.org
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/LaTeX
https://wiki.contextgarden.net/Main_Page
https://en.wikipedia.org/wiki/ConTeXt
https://en.wikipedia.org/wiki/ConTeXt
https://en.wikipedia.org/wiki/ConTeXt
http://xetex.sourceforge.net
https://en.wikipedia.org/wiki/XeTeX
https://en.wikipedia.org/wiki/XeTeX
https://en.wikipedia.org/wiki/XeTeX
https://www.luatex.org
https://en.wikipedia.org/wiki/LuaTeX
https://en.wikipedia.org/wiki/LuaTeX
https://en.wikipedia.org/wiki/LuaTeX
https://www.mathjax.org
https://en.wikipedia.org/wiki/MathJax
https://en.wikipedia.org/wiki/MathJax
https://en.wikipedia.org/wiki/MathJax
https://katex.org
https://en.wikipedia.org/wiki/KaTeX
https://en.wikipedia.org/wiki/KaTeX
https://en.wikipedia.org/wiki/KaTeX
https://www.w3.org/Math/
https://en.wikipedia.org/wiki/MathML
https://en.wikipedia.org/wiki/MathML
https://en.wikipedia.org/wiki/MathML
https://www.overleaf.com
https://en.wikipedia.org/wiki/Overleaf
https://en.wikipedia.org/wiki/Overleaf
https://en.wikipedia.org/wiki/Overleaf
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Mathematics#Using_LaTeX_markup
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/
https://www.unicode.org/reports/tr25/

• Comparison of TeX editors (Wikipedia)

• LaTeX Editors/IDEs (TeX - LaTeX Stack Exchange)

Mathematics typesetting without TeX

• Alternatives to LaTeX (Tex - LaTeX Stack Exchange)

• Mathematical Typesetting (Wolfram Language Reference)

• List of formula editors (Wikipedia)

1.3 Why we need new tools

“Why is the whole document recompiled every time? Why ca n’t
some of the work for ea ch pa ra gra ph (or section or figure) be kept if
the context (font, spa cing, block width, etc.) in which the pa ra gra ph
is recompiled does not cha nge? La TeX should memoize the result of
compila tion for ea ch section ba sed on the context in which it is
compiled. This would elimina te the need for brea king your document
into va rious tex files a nd recompiling them yourself (doing the job of
the compiler) [...]”
—Neil G, in “Are there any open research problems in the
world of TeX?” (TeX - LaTeX Stack Exchange, 2013)

“Automatic breaking of display equations. Currently the breqn
pa cka ge implements the idea s of Micha el J Downes, but AFAIK, the
a lgorithmic a spects a re not a s well understood a s tha t of
line-brea king of text. Is it possible to ca se line-brea king of displa y
equa tions a s a n optimiza tion problem a nd determine a solution
ba sed on pena lties a nd ba dness? ”
—Aditya, in “Are there any open research problems in the
world of TeX?” (TeX - LaTeX Stack Exchange, 2013)

An Invitation to MadHat and Mathematical Typesetting 11

https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://tex.stackexchange.com/questions/120271/alternatives-to-latex
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://reference.wolfram.com/language/guide/MathematicalTypesetting.html
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://en.wikipedia.org/wiki/Formula_editor
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex

From the list of existing software tools for writing mathematics given
above, it might appear as if there is no need for new tools, and indeed, it
seems incontrovertible that there is already a healthy ecosystem of tools
that meet the needs of most mathematical writers at a basic level; even at
a high level, in many ways.

On the other hand, the existing tools can be said to be satisfactory in the
same way that horse-drawn carriages were considered a satisfactory
means of transportation in the early 1900s by most people. And yet,
Henry Ford famously came up with a better solution, not faster horses.

(Credit: xkcd)

The simplest answer to the question of why we need new tools is that
after writing thousands of pages of mathematical content over more than
twenty years, I became frustrated with the existing tools, and felt that
they were not meeting my needs, nor those of other people I know. And I
started to imagine what a better tool might look like, and how it might
be implemented.

A more detailed answer has to do with the technical reasons for why the
existing tools were not meeting my needs, and why they could not even
conceiva bly be improved to meet my needs. The underlying issue is that
the existing tools are all based on the TeX/LaTeX languages, code, and

An Invitation to MadHat and Mathematical Typesetting 12

https://quoteinvestigator.com/2011/07/28/ford-faster-horse/
https://quoteinvestigator.com/2011/07/28/ford-faster-horse/
https://quoteinvestigator.com/2011/07/28/ford-faster-horse/
https://xkcd.com/927/

algorithms, much of which date from the early 1980s. Computing and the
way people interact with computers have evolved considerably since that
time, but the programming languages and user interface paradigms that
TeX/LaTeX were designed to work with have not kept up. Indeed, there
are reasons why they could not keep up, having to do with the very ways
in which these systems were architected and designed.

Let me elaborate on this. I will preface this critique by stating that I
consider the TeX/LaTeX software stack to be among the best software
systems ever developed. It is a true work of genius, and the fact that it is
still widely used today, around 38 years after its introduction, is a
testament to its many strengths. [Insert menta l ima ge of this a uthor lying
prostra te in front of a home-ma de shrine a nd singing a hymn of pra ise to
Dona ld Knuth, Leslie La mport a nd their colla bora tors.]

Soul-cleansing religious rituals aside, I must beg forgiveness for the
blasphemous rant that follows, in which I describe the shortcomings of
TeX/LaTeX from the vantage point of 2022.

• An inefficient compilation model. The TeX engine is built
specifically as a compiler for the TeX language (which is classified
as a Turing-complete programming language). That means
that in order to generate its final product (these days, a PDF
document; in the past, a DVI file) it scans your entire document
code in a linear fashion, from beginning to end. This is done ea ch
time you wa nt to view your compiled code.

When you are writing a short document of a few pages, this is
usually not a big problem. But when writing a book, thesis, or
other long document, the time spent waiting for your document to
compile, and the effort of hitting the re-compile keyboard shortcut,
becomes a big drain on the writer’s time and cognitive bandwidth.
Even with workarounds such as splitting your project into multiple
smaller files and using conditional compilation commands to focus
on the sections you are currently editing, this results in considerable

An Invitation to MadHat and Mathematical Typesetting 13

https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://en.wikipedia.org/wiki/Device_independent_file_format
https://en.wikipedia.org/wiki/Device_independent_file_format
https://en.wikipedia.org/wiki/Device_independent_file_format

frustration and fatigue.

• An outdated notion of what a “document” is. TeX and
LaTeX were developed at a time when the notion of a “document”
was synonymous with a static pile of papers, or its electronic
analogue. A document was meant to be viewed, but not interacted
with in any way.

Today, most people will routinely refer to “documents” that are
meant to be viewed on an electronic device and contain videos,
audio files, clickable elements, expandable and collapsible sections, a
linear (or nonlinear) slide presentation, and other interactive
elements, up to and including even a complete video game.

Even in the limited context of mathematical documents, the live
notebook interface popularized by software such as
Mathematica and Jupyter has shown us that there are enormous
benefits to having documents that one can interact with:
expandable and collapsible sections make it much easier to navigate
a long document with a complicated content hierarchy; interactive
mathematical plots with manipulable elements such as sliders that
control a parameter are an incredible tool for data visualization and
intuition-building; animations and embeddable video clips can spice
up a dry presentation, etc. All of those types of content are
impossible to include in any document generated by the TeX
engine.

• An un-adaptable code base. The TeX code base, descended
from a version of TeX called TeX82, is written in the WEB
programming language. It is compiled into C code using a utility
called web2c. The code is not designed according to object-oriented
programming methodology. These architectural issues make TeX
very difficult to adapt for new uses and to integrate with other
modern software tools. As far as I understand, a modern software

An Invitation to MadHat and Mathematical Typesetting 14

https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Notebook_interface
https://en.wikipedia.org/wiki/Notebook_interface
https://www.wolfram.com/mathematica/
https://jupyter.org

developer wishing to employ the TeX engine has to essentially use
the engine as an impenetrable black box by writing TeX code into a
file, running the TeX engine on that file, and then reading the
output from the file generated by the engine. This is not a recipe
for fostering innovation.

• An outdated user interface paradigm. TeX/LaTeX were
designed as command line tools, the prevailing user interface
paradigm for the period in which they were designed. Modern
front-ends such as TeXShop, TeXWorks, WinEdt and numerous
others attempt to hide this interface behind a modern user
experience with an editor window, graphical controls and other
design elements we expect in 2022. But they can do so with only
limited success, as for example any errors produced by the
typesetting engine have to be reported to the user, and this is done
through a “console” window that produces the errors in the
original, 1980s-style, headache-inducing format inherited from the
original TeX. From the point of view of 2022 user experience
standards, the TeX approach to error reporting and code debugging
seems hardly acceptable.

• No Unicode support. TeX and LaTeX do not support the
Unicode text encoding standard. (This is one of the main issues the
XeTeX typesetting engine was developed to address.)

• No accessibility support. The area of accessibility has
developed tremendously since the 1980s, but TeX and LaTeX offer
essentially zero support for accessibility.

TeX/LaTeX have a variety of other, more minor, deficiencies that one
learns about over time, and that one imagines may be addressed by new
tools. (The same can be said of any other software, of course.) Some of
them were already addressed by packages developed from within the
LaTeX developer community, but others would be difficult to address due

An Invitation to MadHat and Mathematical Typesetting 15

https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
https://tex.stackexchange.com/questions/339/latex-editors-ides
XeTeX
https://en.wikipedia.org/wiki/Computer_accessibility

to the structural issues I outlined above. Ultimately, it seems desirable to
have mathematical writing tools that are built independently of the TeX
toolchain, using modern approaches, with the needs of today’s users in
mind, and without the historical baggage that reliance on TeX and its
descendant systems entails.

1.4 How aims to satisfy the need

, which I started developing in 2019, represents my initial (though
by no means final) attempt at realizing my vision of a “dream”
mathematical writing system. Its design was informed by my experiences
with TeX/LaTeX, and with various other mathematical software systems
(Mathematica, SageMath, and others), word processors, and text editors
and formats such as MarkDown. I also embarked along the way on a deep
study of TeX’s typesetting algorithms, and of the weird and wonderful
world of mathematical (and non-mathematical) typography. Many of the
interesting ideas I learned about — as well as some new ones I thought
up myself — influenced the design.

The journey of is far from complete, but as of the current release
(Version 1.1.1) I am now at a point where I feel comfortable saying that I
have developed an actual tool that works, for at least some people to do
at least some of the things they need. Moreover, it is a tool built with an
eye towards the future, and that already addresses at a fairly good level
several of the important structural issues that I saw with existing
mathematical writing tools. Most importantly, documents need
no “compilation” — your typesetting code is compiled instantaneously as
you type. This gives the software more of the feel of using a word
processor than a computer language compiler.

at this point in time consists of two main elements:

1. A content specification language, called , for writing your
document in; this is analogous to (and draws heavy inspiration

An Invitation to MadHat and Mathematical Typesetting 16

from) the LaTeX language.

2. A desktop app, called , for editing and viewing your
documents. This is analogous to the LaTeX graphical front-end
systems (e.g., TeXShop).

My hope is that in releasing this book, and publicly releasing the source
code for the current version (which I plan to do soon), I will kickstart a
process that will get people using , and enable me to get help (in
various forms — see Chapter 4) in continued development of the
project. is not yet a complete publishing solution in the same
way that a mature system like LaTeX is, but what I have created can be
regarded as a foundation for creating a system that can aspire to evolve
to someday be as good as, or better than, LaTeX.

An Invitation to MadHat and Mathematical Typesetting 17

Chapter 2: The nine design
principles of

When creating a complex piece of software like , you find yourself
having to make a large number of technical and design decisions. These
decisions are connected by a complicated web of interconnections, with
each decision affecting many others. One can quickly get overwhelmed by
the sheer complexity of the structure one is building.

A helpful way to deal with the complexity is to have a set of principles
that point the general way to the destination you are trying to reach.
This makes decision-making somewhat easier.

Here are the principles I set to myself as I embarked on the journey of
developing :

1. no compilation

2. no error messages

3. no invalid code

4. Unicode support

5. eliminate binary files

6. expansive notion of a “document”

7. book-quality typesetting

8. beautify and simplify code

9. “Real artists ship”

Below I lay out the principles in detail. I also describe some of the
consequences they led to, and the tradeoffs and choices I had to make

An Invitation to MadHat and Mathematical Typesetting 18

when principles clashed with practical realities, or with other principles. I
hope this will go some way to explain my thought process and why

works the way it does. Where appropriate, I have added links to
the relevant sections in the user manual which comprises the
later part of this book.

Design Principle 1: no compilation

The “no compilation” rule was my North Star in developing . The
need to compile documents in LaTeX is both my biggest personal source
of frustration when writing, and, in my opinion, the biggest impediment
to mass adoption of LaTeX by “ordinary” (that is, non-technical) users.
For this reason, right from the outset, every design decision I made was
informed by the need to facilitate writing code that gets mapped into a
rendered document, instantaneously — or as close to instantaneously as
can be achieved.

This goal of instantaneous typesetting is difficult to achieve, and forces
some serious constraints on how a document needs to be
structured. The issue is that the way a given piece of text gets typeset is
heavily context-dependent. Typesetting algorithms have a state they keep
track of, which includes contextual information about the current font,
font size, weight, text color, etc. In theory, typing even a single character
in the code can have downstream effects that affect the way the entire
part of the formatted document below the current editing position looks.
It can even have upstrea m effects that affect the ea rlier part of the
document. (This issue comes up in LaTeX with equation and section
cross-referencing, the table of contents, page reference numbers, and
more; this is why LaTeX code usually needs to be compiled multiple
times to produce a correctly formatted document.)

I developed a few strategies to make the goal of instantaneous typesetting
achievable:

An Invitation to MadHat and Mathematical Typesetting 19

https://tex.stackexchange.com/questions/573758/number-of-compilations
https://tex.stackexchange.com/questions/573758/number-of-compilations
https://tex.stackexchange.com/questions/573758/number-of-compilations

• Separate document content and configuration. The principle
of separating content from styling/configuration in digital
documents is well-known. In the world of web design, this manifests
as the organization of web page files into CSS files (styling) and
HTML files (content). In LaTeX, documents are logically divided
into the preamble (configuration) and body (content).

In , notebook configuration is handled in a separate
editing interface from the main notebook code editor. The
configuration code can be edited freely, again with instant
responsiveness, but any changes to this code, when a pplied to the
notebook, result in the notebook pages being retypeset — an
operation that may take a few seconds. This is one necessary
deviation from instant responsiveness, but the idea however is that
configuration code is not edited frequently, so this momentary pause
does not interfere with the normal workflow of editing the actual
content of the notebook.

• Compartmentalize: the submarine document model. Ships
and submarines are built with a compartmentalized design, to
contain damage in the event of flooding or fire. Borrowing from
this naval engineering concept, the need for an efficient parsing
model for the language that will allow instantaneous
typesetting led me to a similar compartmentalized design for

notebooks that will ensure that only a minimal amount of
content needs to be retypeset with each user edit. The main types
of “compartments” (in addition to the notebook configuration code
section described above, which is itself a kind of compartment) are:

○ Paragraphs. A paragraph of code represents the
basic unit of typesettable content, in the sense that
with each user keystroke or other editing operation,
will retypeset the code paragraph (or paragraphs, in some
cases) affected by the edit.

An Invitation to MadHat and Mathematical Typesetting 20

https://en.wikipedia.org/wiki/Ship_floodability
https://en.wikipedia.org/wiki/Compartmentalization_(fire_protection)

For each paragraph, the typesetting context at the beginning
and end of the paragraph is memoized. In the event that your
edit operation affects the typesetting context, for example if
you enter a command to change the font size or turn on
italics, the change in the context will percolate down to the
following paragraphs, which are also retypeset as appropriate
until the typesetting context stabilizes. In this way, for those
infrequent user edits that cause a substantial amount of the
page content to be retypeset, that will be handled seamlessly
(with a momentary delay, which again is not a problem
because such operations are rare).

○ Pages. notebooks are separated into pages. This has
many advantages, and makes a lot of sense regardless of the
technicalities of implementing instantaneous retypesetting,
since it makes it easier to organize the content in large
projects. However, one of the less obvious advantages of this
organizational structure is that it creates a natural
compartment boundary for where retypesetting can stop in
the event of an edit that percolates a long distance down the
stream of notebook content.

• Avoid pagination. notebook pages are scrollable surfaces
of unlimited height, similar to web pages. Thus, unlike LaTeX and
traditional word processors, does not put a strong emphasis
on paginating your document into discrete pages of equal size; the
idea is that pagination is something writers really don’t care much
about or need to pay attention to until they are in a fairly advanced
stage of the writing process, so it’s a waste of CPU cycles and the
user’s attention to be constantly calculating page boundaries the
way most word processors do, or the way LaTeX does each time you
compile a document.

Deferring or avoiding pagination reduces the complexity of the

An Invitation to MadHat and Mathematical Typesetting 21

retypesetting algorithm, and again helps makes typesetting happen
instantaneously or nearly so. However, rest assured: still
knows how to do pagination, and will perform it at the time when
you are printing your notebook or exporting it as a PDF.

I haven’t yet solved all the technical issues associated with enforcing the
no compilation principle. Equation and section cross-referencing, and
automated table of contents generation, listed in the section on missing
features in Chapter 3, are some of the areas where I foresee having to
come up with new ideas for how to minimize the disruption caused by
having to retypeset several different places in the document in response to
a user edit that affects cross-referencing. This is a pending issue and
poses somewhat of a challenge to deal with in a satisfactory way, but I
am confident that it can be addressed successfully.

Design Principle 2: no error messages

Another source of frustration that motivated me were the abstruse error
messages produced by the TeX compiler. While error messages are a fact
of life for anyone who writes code — and code is code, after all
— the TeX-style error reporting format gave me such an allergy that I
decided to try making a firm rule that in there will be no error
messages. I wanted to follow that decision to its logical conclusion and see
if a usable system can still emerge.

The need to stand by this principled decision led to several corollary
decisions that were interesting in their own right. First, the
language had to have less power than a full programming language: in the
case of TeX, the awesome power of Turing-completeness is one of the
things that, although beloved by TeX’s more hard-core fans, adds
complexity and ends up making code very difficult to debug (this issue is
a known one that is discussed in various places, e.g., here and here). By
making the language less powerful and expressive, a lot of things become

An Invitation to MadHat and Mathematical Typesetting 22

https://tex.stackexchange.com/questions/58042/are-there-any-disadvantages-of-tex-being-turing-complete
https://tex.stackexchange.com/questions/128454/are-there-any-open-research-problems-in-the-world-of-tex
https://tex.stackexchange.com/questions/538/how-to-best-debug-latex

simpler.

Second, I found that it is not terribly difficult to develop creative ways of
guiding the user to write code that does what they want without
explicitly displaying text-based error messages. In other words, I came to
the view that text-based error messages are a lazy solution we inherited
from an earlier era of computing history, but that is actually largely
unnecessary today. For example, syntax highlighting can be used to
indicate to the user that a keyword they typed is not a valid symbol in
the language. Code completion helps the user find the correct symbol
name they are looking for; unmatched brackets can also be indicated
using syntax coloring cues, etc. Such mechanisms can perhaps be
a ugmented with textual error messages, but the default system behavior
should be that of a kind of “butler” who quietly assists the user but stays
out of the way as much as possible.

Third, the need to eliminate error messages also led me to the realization
that the whole concept of syntax errors in computer languages is itself
somewhat outdated, and is unnecessary in the context of what is
trying to do. This led me to the next design principle.

Design Principle 3: no invalid code

This principle states that any string of (Unicode-encoded) text is
considered valid code in . That is, is maximally forgiving
of “errors”, to such an extent that the whole notion of an “error” loses its
meaning, and there is no longer a reason to display an “error message”.
No matter what code you punch in, something will be displayed as your
rendered document content, and your workflow will not be interrupted by
a compiler complaining that you made an “error.”

Of course, what can and does occasionally happen when you are writing
content in is that you write code tha t does not produce the output
you wa nted. This might be considered by some people as the same thing

An Invitation to MadHat and Mathematical Typesetting 23

as an “error”; but I find it helpful to make a distinction between code tha t
the softwa re refuses to process (the dreaded “syntax error”) and code tha t
does not give the results you wa nt. With the former, the user has their
workflow interrupted, and may over time get the sense that the software
is shaming them for doing something “wrong.” With the latter, the user
merely sees that their code has some issues, and can work on resolving
those issues, using the various mechanisms the software has for pointing
them towards recognizing and fixing the issues.

It is a subtle distinction and perhaps mainly a philosophical one, but
nonetheless, it has been a useful guiding principle for me.

Design Principle 4: Unicode support

The lack of support for Unicode is a major shortcoming of LaTeX
(although it is a problem that people in English-speaking countries find it
easy to not care about). The XeTeX system, a variant of LaTeX, was
developed to address that among other issues. As someone who was
designing a new system from the ground up and had modern text
processing APIs available to work with, including support for Unicode as
a basic design principle seemed to me like an obvious decision that would
offer many benefits and maximize the usefulness of the software for the
largest number of people.

Moreover, Unicode support can be seen as a step towards the broader
goal of improved accessibility of the software to people from all cultures.
Eventually, my goal is for the application interface and
documentation should be internationalized and localized (or, if you
are a speaker of British English, internationalised and localised). There
are many other accessibility features that could be added over time, such
as the long sought after goal of a mathematics-aware screen reader (see
these online discussions: [1] [2]).

An Invitation to MadHat and Mathematical Typesetting 24

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://tex.stackexchange.com/questions/37640/are-there-good-resources-for-converting-tex-type-files-to-spoken-word
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat

Design Principle 5: eliminate binary files

As a further nod towards the idea of making software that is more
human-friendly and accessible, I wanted to move away from the basic
compiler model of a software system that reads an “input file” of “source
code” (typically, a plain text file) and generates a “output file” that is
usually in a binary file format. This separation of “source content” from
“compiled content” in my opinion reduces content accessibility and
future-proofed-ness, since with these types of compiled formats it is often
the binary file that gets distributed, with the human-readable and
-editable file that generated that binary content being either lost through
carelessness or indifference, or intentionally withheld.

I decided that in there will only be one kind of file (namely, a
“.mhat” file, representing a notebook, or document), which will
consist only of human-readable content, to the extent possible. Thus,
there is no file format for a “compiled document”, nor a need for
such a format, since the content is simply compiled in real time when you
open the document in order to view it.

In practical terms, notebooks do allow for binary content in the
form of image and video files, so this principle had to be compromised in
a small way. Also, a notebook is technically a folder that presents
to the user as a single file (using the macOS concept of a package) and
contains the code text files of the notebook’s pages, as well as
any binary media files that are included in the notebook.

As another acknowledgement of the fact that operates in the real
world rather than the utopian world of my dreams, if your goal is to
produce a PDF document from your notebook, will happily
export your notebook to PDF, again compromising the “no binary
files” principle. Similarly to Groucho Marx, I have a firm set of
principles, and if you don’t like them... I have another set!

An Invitation to MadHat and Mathematical Typesetting 25

https://en.wikipedia.org/wiki/Package_(macOS)
https://quoteinvestigator.com/2010/05/09/groucho-principles/
https://quoteinvestigator.com/2010/05/09/groucho-principles/
https://quoteinvestigator.com/2010/05/09/groucho-principles/

Design Principle 6: expansive notion of a
“document”

I mentioned in Chapter 1 that I found the TeX/LaTeX premise that a
“document” is a static collection of pages limiting and outdated. I decided
that will adopt a more modern view of what a document is, and
will attempt to provide users with the tools to create dynamic documents
containing interactive elements, animations, videos, sequenced slide
presentations, and more.

The document structure I ended up with in is what I came to
call notebooks (I have no claims to originality on this name, it
goes without saying). This concept realizes many elements of my vision of
dynamic and content-rich documents. I hope that future versions
will enable even more dynamism and interactivity.

Design Principle 7: book-quality typesetting

With all the attention paid to exciting dynamic features, an area in which
it is easy to outdo an old horse like TeX that only knows old tricks, we
should not forget that is at its heart a tool for writing, and I
wanted the typeset content it produces to be uncompromisingly elegant
and beautiful. In other words, the typesetting has to be of a quality
suitable for professional-level book publication.

Of course, the old horse that is TeX is still the unchallenged champion
and is considered the gold standard in terms of the quality of its
typesetting algorithms. The current version of does not quite live
up to the same standard, but I think it’s a good start, and future work
will continue to be guided by this principle. (Meanwhile, I am eating my
own dog food by writing and publishing this book using . The
result is not too shabby, I think.)

An Invitation to MadHat and Mathematical Typesetting 26

https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food

Design Principle 8: beautify and simplify code

This is probably the least important of the design principles, but it’s still
an idea that informed my thinking. One of my gripes with LaTeX coding
is that the code is, for lack of a better word, ugly. Again, I mean no
disrespect to Donald Knuth and his pioneering work, it’s just that things
change over the course of 40-odd years. We are now older, wiser, have
better keyboards, computer screens, a much larger character set to work
with, etc. If you are designing a new computer language in the 2020’s,
why not move away from some of the annoying legacies of the early days
of computing?

What I mean by “simplify code” is this: first, LaTeX has some inefficient
and annoying (and hard to debug) syntax rules. Multi-argument
commands are an example, e.g., the code to type out the fraction “1234” is
\frac{12}{34}. This is a wasteful use of braces. In , this became
⌘frac⟪12Ҕ34⟫.

As another example, LaTeX interprets alpha typed in math mode as “the
symbol ! times the symbol " times the symbol # times [etc]”. Have you
ever read a mathematical text where someone wanted to multiply those
precise symbols in that precise order? I haven’t. It is more efficient to
interpret alpha as the Greek letter alpha and render it as α, which is
what does. So the general idea is that mathematical keywords do
not have to be preceded by a backslash or special control character — in
this way we save keystrokes and make the code nicer-looking and easier to
read. And for those times when you do want to spell out the
multiplication of several symbols (say, “% times &”, which in LaTeX can
be written \mu, in you can do that just by inserting a space
between the symbols, typing m u. In this way you avoid writing mu, the
keyword for the Greek letter mu (µ).

What I mean by “beautify code” is this: when TeX was invented, Donald
Knuth had only the ASCII character set to work with. This led him to

An Invitation to MadHat and Mathematical Typesetting 27

assign various ASCII characters as special characters, while still reserving
ways to use those symbols for use according to their “ordinary” meaning
— that is, characters are (heavily) overloaded. When designing a new
computer language these days, we have the entire Unicode world of
characters available to work with, and can easily avoid this overloading,
which makes code more verbose and ugly. So, I decided that in ,
there will be a set of special characters that will be used only as
special characters and for no other reason. (On the off-chance that you
want to actually “print” the special characters themselves, there are ways
to do that, but the idea is that you will almost never want to do that,
unless perhaps you are writing a manual on how to use). So for
example, the LaTeX backslash \ got replaced by the command symbol ⌘;
the curly braces {} were replaced in by more specialized braces
⟪⟫; and the illogical dollar sign $, which after all signifies a particular unit
of currency and has no logical connection to mathematics, was replaced
with the em-hat symbol M̂.

There are obvious tradeoffs involved in following this line of thinking. The
main one is that no one knows how to type the command symbol and
other esoteric characters I chose to use. See this page for how I chose to
address this issue.

There are other minor decisions I made that were informed by the
“beautify and simplify code” principle. I won’t describe them all here —
you will find them scattered in various places across the user manual
(which I know you will read from cover to cover... right?).

Some people who knew I was developing a typesetting system have
advised me to try to make it backwards-compatible with LaTeX, i.e., the
syntax should be as similar as possible to LaTeX syntax. That idea would
clash with the “beautify and simplify code” principle and the decisions it
led me to make, as I was describing here. On the other hand, I recognize
that LaTeX-compatibility could make a lot of people who are already
comfortable with LaTeX more easily inclined to try and perhaps

An Invitation to MadHat and Mathematical Typesetting 28

switch to using it. So, it’s a dilemma that I struggle with, even today.

Perhaps it’s my quirky personality, individualism, rebellious nature, or I
don’t know what exactly, but in the end I couldn’t fathom the idea of
creating Yet Another TeX Clone. I wanted to create something genuinely
new that satisfied my particular aesthetic sensibilities. Perhaps it will
turn out to be a self-defeating decision that dooms the entire enterprise
to failure. But this is one place where in the clash between a philosophical
principle and a practical calculation, the philosophical principle won out
(for now at least).

As another post-hoc rationalization for my decision, consider this: there
are many variants of TeX/LaTeX out there, and they all use the familiar
syntax invented by Donald Knuth in the late 1970s. Wouldn’t it be
interesting for there to be at least one system that tries to go in a
different direction, and give the TeX crowd a run for its money? Who
knows, it might teach us something new, and find at least a niche
audience of people who like to try new things.

As a final remark about this principle: I did conclude in the end after all
my travails that code can probably never be beautiful, and in some
situations it’s also unrealistic to expect it to be simple. So perhaps much
of my thinking on this issue has been for naught, and all I really managed
to achieve was to create a language syntax that is different from what
people are currently used to. Whether that’s a good or a bad thing
remains to be seen.

Design Principle 9: “Real artists ship”

“But to do tha t, to ma ke a difference in the world a nd a dent in the
universe, you ha d to ship. You ha d to ship. You ha d to ship.

Rea l a rtists ship.”

— Steven Levy, Insanely Great

An Invitation to MadHat and Mathematical Typesetting 29

https://www.ghostinthepixel.com/?p=24
https://www.ghostinthepixel.com/?p=24
https://www.ghostinthepixel.com/?p=24

“Real artists ship,” a slogan coined by Steve Jobs as he cat-herded a band
of brilliant Apple engineers into shipping the Macintosh computer in
early 1984, is the principle that overrides all other principles. It
symbolizes the ever-present tension between idealism and the need to
deliver something that at least does, well, something.

If you catch me in an inconsistency or in a failure to abide by any of the
above-listed principles, or even in doing something that is the exact
opposite of what I said I wanted to do, I will point to this principle and
say in my defense: at least I shipped something.

An Invitation to MadHat and Mathematical Typesetting 30

https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt
https://www.folklore.org/StoryView.py?story=Real_Artists_Ship.txt

Chapter 3: Future plans

3.1 Overview of plans

is at an early stage of its life cycle, and much work remains to be
done, probably by many people, to get the project to where it needs to be
in order to be usable by a large number of people in the way that I
imagine it can be. I will be the first to admit that the project is far from
finished. (But I offer no apology for this; see the “Real artists ship”
design principle in Chapter 2.)

At the same time, the set of things to be done is fairly concrete, and
these goals are all achievable given time, persistence, and support from
people who believe in the concept.

My plan for the immediate future is to continue to develop the software
and add more features, while recruiting support from other people who
are interested in . This support is essential, as the scope of the
project is clearly too large for one person to handle successfully. (See the
next chapter for various ways in which you can help.)

A medium-term plan is to set up an organizational structure in which a
group of people can work to continue to improve . I have not
decided what this structure would be — it may be as a non-profit, a
for-profit enterprise, or a loose collection of individuals working towards a
shared goal. (Or something else entirely! I am open to suggestions.)

At a more concrete level, here is a list of the main shortcomings that
exist in the current version, which will need to be addressed to take

to the next level in terms of its usefulness.

3.2 List of missing features

An Invitation to MadHat and Mathematical Typesetting 31

• Section numbering and cross-referencing

• Equation numbering and cross-referencing

• User-definable environments — theorems, definitions etc.

• User-definable symbols

• Line-breaking algorithm for double-justified paragraphs

• Hyphenation algorithm

• Floating figures

• Footnotes

• Bibliography support

• Table of contents

• Customizable user-definable sections for PDF export

• Importing content from LaTeX

3.3 Existing features that can be improved

• User interface improvements

• Customizable formats for lists

• Customizable formats for page numbers

• More options for tables

• More options for slide animations

• Improved plotting of mathematical functions

• Improve LaTeX exporting

An Invitation to MadHat and Mathematical Typesetting 32

• Improve Unicode support

3.2 Longer term goals

Assuming I am successful in finding the time, help and other resources I
need to keep the project going, there are some longer term goals that I
would like to see accomplished:

• Adapt to run on Windows and/or Linux.

• Adapt to run on iPad, iPhone, and Android phones and
tablets

• Adapt to run on a web browser

• Release a public API that enables content to be processed
and used by third-party software

• Add a mouse-based interface for editing graphical diagrams

• Add a mouse-based interface for editing animations

• Add a mathematics-aware screen reader and other accessibility
features

An Invitation to MadHat and Mathematical Typesetting 33

https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat
https://tex.stackexchange.com/questions/454944/is-there-screen-reader-software-or-a-built-in-method-that-supports-latex-equat

Chapter 4: Summary and a call for
help

The preceding chapters have been a kind of brain-dump in which I shared
my vision for how can advance mathematical typesetting (and
why that would be a good thing) and the various dilemmas I have been
dealing with since I started working on it. It is a fairly high-level
description, and there are many details I did not discuss. If you are
interested in learning more, read on to the second part of the book, which
is the user manual that describes in detail everything the
software can do.

One of my main reasons for writing this exposé is that if the project is to
become something more than a hobby project of a lone programmer, I
need your help and the help of other people, so I felt a need to explain
where I am and where I’d like to be going.

An obvious way for you to help is to use yourself, send me
feedback that can help me improve it, and tell other people about it.
There are many other ways in which you can help; here are some of them:

• If you have money: please donate some money to the project. I
have set up a donation button here.

• If you have useful skills: contributing your time and skills could
be even more valuable than money, so feel free to contact me.
Here are things I need help with:

○ Coding

○ Writing documentation and marketing materials

○ Graphic design

An Invitation to MadHat and Mathematical Typesetting 34

https://madhat.design/about/
https://madhat.design/about/
https://madhat.design/about/
https://madhat.design/about/

○ Making video tutorials

○ Building and maintaining a website

○ Helping to set up a legal structure for

○ Fundraising, setting up a Kickstarter campaign

○ Creating -themed merchandise and an online store

○ Other legal, business advice, etc

• If you are an academic. You can help by inviting me to speak at
your institution to help spread the word about . You can
also tell your colleagues about the project.

• If you are a student. Please use for your own work, and
tell other students and your professors about it. If you are looking
for internship opportunities, contact me.

• If you are active on social media. Spread the word about
!

• If you know other people who fall into any of the above
categories, tell them about , and refer them to this page.

An Invitation to MadHat and Mathematical Typesetting 35

https://madhat.design/about/
https://madhat.design/about/
https://madhat.design/about/

Pa rt II

Version 1.1.1

User Manual

An Invitation to MadHat and Mathematical Typesetting 36

About

is a system for writing documents. It consists of a language for
coding up the text and other content of your document, and an app to
edit and view documents.

System requirements. is a macOS app. It will run on Mac
computers running version 10.13 or higher of macOS.

An Invitation to MadHat and Mathematical Typesetting 37

About this help guide

This guide documents the main features of . An interactive
version of the guide is included as the Help feature within the
app. To access it, click Help → MadHat Help in the app main menu.

A note about code snippets. Throughout the guide, you will find
many examples of code in the MadHat language. These code snippets are
displayed in the default syntax highlighting theme of the MadHat
code editor. For example, the code snippet

 "In ⌘italic⟪that⟫ direction," the Cat said,
waving its right paw round, "lives a Hatter: and
in ⌘italic⟪that⟫ direction," waving the other paw,
"lives a March Hare. Visit either you like:
they’re both mad."

displays a paragraph of code parsed in the default mode for entering
code, known as text mode, as it would appear when entered in the code
editor. Similarly, the snippet

M̂: a = m^2-n^2 ⌘newline҇	
b = 2mn ⌘newline҇	
c = m^2 + n^2

shows a paragraph parsed in math mode.

Clicking on a code snippet in the interactive help window copies the code
shown in the snippet into the clipboard. You can then paste it into your
own notebook and experiment with it.

An Invitation to MadHat and Mathematical Typesetting 38

Help
Version 1.1.1 (April 2022)

Use the search bar to search for help on a specific topic, or browse the
help topics suggested in the links below

For sample code and additional resources, go to https://madhat.design

• Essential help topics:

○ About this help guide

○ Introduction to MadHat and MadHat notebooks

○ Typing text with MadHat

○ Typing mathematical formulas with MadHat

○ Special symbols in MadHat

○ Key substitutions in the editor window

• Help topics on the MadHat language:

○ Grouping content in blocks

○ MadHat commands

○ Command attributes

○ Delimited lists

○ Notebook configuration

○ Paragraphs

○ Spaces and newlines

An Invitation to MadHat and Mathematical Typesetting 39

https://madhat.design

○ Styling text

○ Text styling options: bold, italic, underlining,
strikethrough, highlighting, substitutions

○ Setting fonts and the font size

○ Colors

○ Headers and subheaders

○ Lists and their use for outlining

○ Formatting tables

○ Formatting boxes

○ Hyperlinks and intralinks

○ Creating slide presentations

○ Mathematical formatting topics:

▪ Subscripts and superscripts

▪ Fractions

▪ Square roots

▪ Greek letters

▪ Mathematical font variants

▪ Differentials

▪ Standard mathematical operators

▪ Brackets

▪ Horizontal brackets

An Invitation to MadHat and Mathematical Typesetting 40

▪ Extensible symbols

▪ Special mathematical symbols

▪ Binary relations

▪ Binary operators

▪ Matrices

▪ Mathematical symbol decorations

○ Adding images to a page

○ Adding videos to a page

○ Drawing graphics figures

○ Plotting mathematical functions

• User interface topics:

○ The media library of a notebook

○ Printing and PDF exporting notebooks

○ Exporting notebooks to LaTeX

○ Syntax highlighting themes and the themes editor

• Additional information:

○ About MadHat

○ MadHat version history and changelog

○ Index of MadHat commands and keywords

An Invitation to MadHat and Mathematical Typesetting 41

Introduction to

Overview

is a system for writing and reading documents. It consists of a
language for coding up the text and other content of your document —
called the MadHat language — and an app to edit and view MadHat
documents.

is suitable for use by anyone who wants to write anything, either
for personal use or for sharing with others. It is especially optimized for
writing content that contains mathematical formulas.

documents are called notebooks. A notebook consists of one or
more pages. Each page is a scrollable body of content of potentially
unlimited length.

The types of content that a notebook can contain are:

• Text

• Mathematical formulas

• Slide presentations

• Images and graphical diagrams

• Videos

The notebook windows

notebooks are viewed and edited in two main windows, the
editor window and the viewer window, shown in the screenshot

An Invitation to MadHat and Mathematical Typesetting 42

below. The editor window (shown on the left) is where you enter the code
that specifies the content of the notebook. The viewer window, shown on
the right, is where the formatted content appears.

Important things to know

Here are some of the main things to know about notebooks:

• A page in a notebook can (but does not have to) consist of multiple
slides, which are intermediate states in which only some of the
page content is shown.

• notebooks can be exported to PDF format. However,
viewing a notebook in the native viewer inside the app rather than
as an exported PDF document makes it possible to interact with
the notebook in ways that are not possible to do with a PDF
document.

• The content in a page can be further partitioned into sections,

An Invitation to MadHat and Mathematical Typesetting 43

subsections, etc. Pages can also contain hierarchical content
organized in itemized (numbered, or unnumbered) lists. Sections as
well as list items can be easily closed (“collapsed”) and opened
(“expanded”) by the reader.

• offers features for easy navigation between pages and slides;
internal linking across pages (intralinks); external linking
(hyperlinks) to web pages; and many more features that make it
useful as a means for sharing information and ideas.

• adopts the Unicode text encoding standard as its
technical foundation for representing textual content. This makes
the full range of international character sets available for use.
Currently only left-to-right writing is supported.

• notebooks can be exported to LaTeX.

An Invitation to MadHat and Mathematical Typesetting 44

https://unicode.org

List of special symbols

The language reserves certain Unicode characters as having a
special meaning in entering code. Here is the list of special characters and
their meanings, with links to the help pages explaining how they are
used.

• Characters that are used in code

○ Command symbol ⌘ (Unicode: U+2318)
Keyboard shortcut: \ (backslash key)

○ Open block symbol ⟪ (Unicode: U+27EA)
Keyboard shortcut: [(left square brace key)

○ Close block symbol ⟫ (Unicode: U+27EB)
Keyboard shortcut:] (right square brace key)

○ Close command symbol ҇ (Unicode: U+FF0E)
Keyboard shortcut: . (period key ––– this substitution
applies only at the end of a command)

○ Math shift M̂ (Unicode: the letter “M” followed by U+0302
)
Keyboard shortcut: $ key (dollar sign key)

○ Text shift T̂ (Unicode: the letter “T” followed by U+0302)

○ Attributes symbol ҙ (Unicode: U+FF20)
Keyboard shortcut: @ key

○ Attribute declaration operator ← (Unicode: U+2190)

○ Primary list delimiter Ҕ (Unicode: U+FF1B)

An Invitation to MadHat and Mathematical Typesetting 45

https://util.unicode.org/UnicodeJsps/character.jsp?a=2318
https://util.unicode.org/UnicodeJsps/character.jsp?a=27EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=27EB
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF0E
https://util.unicode.org/UnicodeJsps/character.jsp?a=0302
https://util.unicode.org/UnicodeJsps/character.jsp?a=0302
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF20
https://util.unicode.org/UnicodeJsps/character.jsp?a=2190
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF1B

Keyboard shortcut: ; key (semicolon key)

○ Secondary list delimiter Ѽ (Unicode: U+FF03)
Key shortcut: # (sharp sign key)

○ Comment symbol Ѿ (Unicode: U+FF05)
Key shortcut: % (percent key)

• Forbidden characters

○ The Unicode characters U+3010, U+3011, U+3016,
U+3017, U+2053 are reserved and should not be used.

Typing special symbols

You can type special symbols by clicking the appropriate symbol in the
special symbols bar in the editor window toolbar:

An Invitation to MadHat and Mathematical Typesetting 46

https://util.unicode.org/UnicodeJsps/character.jsp?a=FF03
https://util.unicode.org/UnicodeJsps/character.jsp?a=FF05
https://util.unicode.org/UnicodeJsps/character.jsp?a=3010
https://util.unicode.org/UnicodeJsps/character.jsp?a=3011
https://util.unicode.org/UnicodeJsps/character.jsp?a=3016
https://util.unicode.org/UnicodeJsps/character.jsp?a=3017
https://util.unicode.org/UnicodeJsps/character.jsp?a=2053

special symbols bar

You can also use the various keyboard shortcuts described in the help
page on key substitutions.

An Invitation to MadHat and Mathematical Typesetting 47

Typing text

The basics

Typing text in is as easy as... typing it. For example, in the
editor window, you can type:

 "In that direction," the Cat said, waving its
right paw round, "lives a Hatter: and in that
direction," waving the other paw, "lives a March
Hare. Visit either you like: they’re both mad."

This typesets in the page viewer window as:

“In that direction,” the Cat said, waving its right paw round, “lives a
Hatter: and in that direction,” waving the other paw, “lives a March
Hare. Visit either you like: they’re both mad.”

We can now start adding some formatting to our text by using
commands. Typing the code

 "In ⌘italic⟪that⟫ direction," the Cat said,
waving its right paw round, "lives a Hatter: and
in ⌘italic⟪that⟫ direction," waving the other paw,
"lives a March Hare. Visit either you like:
they’re both mad."

will typeset as:

“In tha t direction,” the Cat said, waving its right paw round, “lives a
Hatter: and in tha t direction,” waving the other paw, “lives a March
Hare. Visit either you like: they’re both mad.”

Note that the above code uses the symbols ⌘, ⟪ and ⟫, which are some of

An Invitation to MadHat and Mathematical Typesetting 48

the MadHat special symbols. These symbols are indispensable for
formatting any content with richer formatting than basic, unstyled text.

Two additional help topics that are relevant to typing basic text content
are spaces and newlines and code paragraphs.

If you mastered the above topics, you are now ready to start typing text.
You can learn about more options for formatting and styling your text in
the following help pages:

• Styling text

• Bold text formatting

• Italic text formatting

• Underlining

• Strikethrough

• Highlighting

• Text substitutions

• Setting fonts

• Setting the font size

• Colors

For even more advanced text formatting options, refer to these help
pages:

• Headers and subheaders

• Lists and their use for outlining

• Formatting tables

• Formatting boxes

An Invitation to MadHat and Mathematical Typesetting 49

• Hyperlinks and intralinks

Automatic substitutions

implements the following automatic substitutions that make it
easier to type certain characters not supported by most standard
keyboard layouts.

• A unidirectional apostrophe ' gets transformed by the
parser into a right quotation mark character: ’

• Unidirectional double quote characters " are matched with each
other, transforming them into the appropriate left or right double
quotation marks. For example: "Hello," she said will typeset
as

“Hello,” she said.

• An ordinary hyphen character - will typeset as an ordinary hyphen
‘-’. Two repeated hyphens -- are typeset as an en dash ‘–’. Three
repeated hyphens --- are typeset as an em dash ‘—’.

The substitution feature is designed as a convenience, but you also have
the option of inserting the “fancy” substituted characters (directional
single and double quotes, en dashes, em dashes) directly into your code,
by typing them if your keyboard layout supports it, or by using the
standard macOS interface for special symbols, accessible by selecting Edit
→ Emoji & Symbols in the app main menu.

See also

• Typing mathematical formulas with MadHat

An Invitation to MadHat and Mathematical Typesetting 50

Spaces and newlines

interprets space and newline characters in your code in a
particular way that tries to balance functionality, convenience, and code
readability. In addition to the use of those characters, the commands
⌘space⟪...⟫ and ⌘newline⟪...⟫ are available for inserting horizontal
and vertical spaces of arbitrary dimensions in your document. Those
commands also have the advantage of being clearly visible to anyone
reading the code.

Spaces and newlines in text mode

Horizontal spaces

Space characters inserted in your code map to a horizontal space in your
formatted notebook page, according to the following rule:

• One space

This typesets as an ordinary space, whose width is specified in the
font you are using.

• Two consecutive spaces

This typesets as a wide space that is slightly wider than an
ordinary space.

• Three consecutive spaces

This typesets as a double space, that is, a space of exactly twice the
width of an ordinary space.

• Four or more consecutive spaces

An Invitation to MadHat and Mathematical Typesetting 51

This typesets as a quadruple space, that is, a space of exactly four
times the width of an ordinary space.

• ⌘space⟪space width in points⟫ command

Inserts a horizontal space of the specified width.

Some users may find the wide space a convenient type of space
to insert at the end of a sentence. Modern English typographical
conventions seem to favor the use of ordinary spaces at the end of a
sentence. See this Wikipedia article for further discussion.

Newlines and vertical spaces

Within a paragraph of code, a newline character gets interpreted
as a line break. This effect can be suppressed by inserting a comment
symbol just before the newline character.

You can insert a line break without a newline character by writing the
command ⌘newline҇ and continuing the code in the same line.

To insert a vertical space of arbitrary height, use the ⌘newline⟪...⟫
command, with the syntax:
⌘newline⟪space height in points⟫

Spaces and newlines in math mode

Space and newline characters get processed differently in math mode than
in text mode. The main rules to keep in mind are:

• Spaces in math mode have no effect on the typesetting of your
formula, other than to serve as logical separators between different
symbols. For example, will interpret “xy” as “the
two-letter symbol ‘xy’”, but will interpret x y (and also x y,
x y, etc, regardless of the number of spaces you insert) as

An Invitation to MadHat and Mathematical Typesetting 52

https://en.wikipedia.org/wiki/Sentence_spacing
https://en.wikipedia.org/wiki/Sentence_spacing
https://en.wikipedia.org/wiki/Sentence_spacing
https://en.wikipedia.org/wiki/Sentence_spacing
https://en.wikipedia.org/wiki/Sentence_spacing

“the one-letter symbol ‘'’ followed by the one-letter symbol ‘(’.
Based on this interpretation, the typesetting engine uses a
custom algorithm to insert an appropriate spacing between symbols,
in keeping with the conventions and accepted aesthetics rules for
mathematical typesetting.

• Newline characters in math mode are similarly interpreted as logical
separators and otherwise do not affect the amount of space inserted
by the typesetting engine.

• In a math display, you can use the ⌘newline҇ command to
insert a logical line break, specifying the beginning of a new
equation or chain of equations/inequalities. This is useful when
typesetting multi-equation displays, such as

M̂: 	
tau = beta (t-vx/c^2), ⌘newline҇	
xi = beta (x-vt), ⌘newline҇	
eta = y, ⌘newline҇	
zeta = z.

which will typeset as τ = β(, − vx / .2),ξ = β(' − vt),η = (,ζ = 3 .

An Invitation to MadHat and Mathematical Typesetting 53

Typing mathematics

Math mode

makes it easy to typeset mathematical expressions by entering
math mode. This is done using the em-hat, or math shift, symbol M̂. If
your expression is part of an ordinary text paragraph (in which case we
refer to it as inline math), the syntax for inserting such an expression in
your text is

some text content... M̂⟪your mathematical content⟫ ...more text
content

Alternatively, the mathematical content can be shown in its own space
separated vertically from the surrounding text, known as a math
display. The syntax for this is

M̂: your mathematical content

See also the help page on paragraphs.

A keyboard shortcut to enter math mode is to type the dollar sign ‘$’. See
the help page on key substitutions.

Syntax for mathematical content

To understand how to typeset the main elements of a mathematical
expression, refer to these help pages:

• Fractions

An Invitation to MadHat and Mathematical Typesetting 54

• Subscripts and superscripts

• Greek letters

• Commands and math keywords

supports many additional constructs in the vocabulary of
mathematical formulas. Here is a complete list of the supported
mathematical typesetting features:

• Fractions

• Subscripts and superscripts

• Greek letters

• Commands and math keywords

• Square roots

• Mathematical font variants

• Differentials

• Standard mathematical operators

• Brackets

• Horizontal brackets

• Extensible symbols

• Special mathematical symbols

• Binary relations

• Binary operators

• Matrices

• Mathematical symbol decorations

An Invitation to MadHat and Mathematical Typesetting 55

Automatic substitutions

Just like in text mode, the math mode parser performs some automatic
substitutions to simplify entering common symbols. Here is the list of
implemented substitutions:

• - (a hyphen) is replaced by the symbol “− ”, the proper Unicode
symbol for a minus sign

• * (a single asterisk) is replaced by the “times” symbol “× ”

• ** (two successive asterisks) are replaced by by “⋅”, the dot symbol

• *** (three successive asterisks) are replaced by by “∗”, the star or
convolution operator

• <= is replaced with the “less than or equal” symbol “≤ ”

• >= is replaced with the “greater than or equal” symbol “≥ ”

• /= is replaced with the “not equal” symbol “≠ ”

• +- is replaced with the “plus or minus” symbol “± ”

• -+ is replaced with the “minus or plus” symbol “∓ ”

• ... (three successive dots) is replaced by the ellipsis symbol “… ”

• || (two successive vertical bars) are replaced by the double
vertical bar symbol “‖” (which, like the single vertical bar symbol,
is interpreted by as a type of bracket)

• ' (an apostrophe) is replaced with the prime symbol “′ ”, the
correct Unicode symbol for prime or derivative notation

See also: binary relations; binary operators; brackets

An Invitation to MadHat and Mathematical Typesetting 56

Including text inside a mathematical expression

To include ordinary text from inside math mode, you need to leave math
mode temporarily and re-enter text mode. With an inline math
expression, you can simply close out the math mode block, which returns
you to text mode typing. Within a math display, this is done using the
text shift symbol T̂. The syntax for this is

M̂: some math content... T̂⟪your text⟫ …more math content

Examples

The code paragraph

M̂: 	
tau = beta (t-vx/c^2), ⌘newline҇	
xi = beta (x-vt), ⌘newline҇	
eta = y, ⌘newline҇	
zeta = z

typesets as τ = β(, − vx / .2),ξ = β(' − vt),η = (,ζ = 3
See also

• Typing text with MadHat

An Invitation to MadHat and Mathematical Typesetting 57

Blocks

A body of MadHat code of the form ⟪some code⟫ is called a block. The
symbols enclosing the block are the open block symbol ⟪ and the close
block symbol ⟫. See the special symbols help page.

A block cannot span across different paragraphs of code, that is, the
matching open block and close block characters must lie in the same code
paragraph.

You can use the keyboard shortcuts ‘[’ and ‘]’ (left square brace and right
square brace) to type the open and close block symbols. See the help page
on key substitutions.

Blocks allow you to change the typing style locally without affecting all
the content that follows. Any change in the style only applies to the block
in which it is applied, or globally if it is applied outside of any block.

For example, the code

A quick brown fox ⟪⌘color⟪blue⟫jumps ⌘bold on҇
over the lazy⟫ dog

will typeset as

A quick brown fox jumps over the lazy dog

Blocks can be nested inside each other. Thus, the code

A quick brown fox ⟪⌘color⟪blue⟫jumps ⟪⌘bold on҇
over⟫ the lazy⟫ dog

will typeset as

A quick brown fox jumps over the lazy dog

An Invitation to MadHat and Mathematical Typesetting 58

The syntax for blocks is also used for the argument of a command. For
example, the code

⌘bold⟪Very few castaways can claim to have
survived so long at sea as Mr. Patel⟫

will produce the result:

Very few castaways can claim to have survived so long at sea as
Mr. Patel

An Invitation to MadHat and Mathematical Typesetting 59

Comments

You can insert comments in your code by using the comment symbol Ѿ.
Any text that appears in a line of code following the comment symbol is
not processed by .

Inserting a comment also suppresses the effect of the newline character at
the end of the line containing the comment. So, the paragraph of code

Hello, Ѿ a comment	
world

will typeset as:

Hello, world

An Invitation to MadHat and Mathematical Typesetting 60

Commands and math keywords

Two main mechanisms for specifying content in are commands
and math keywords.

Commands

Commands are text strings that start with the command symbol ⌘.
They can be used in either text mode or math mode (although,
depending on their purpose, some commands will be used primarily in
text mode and others primarily in math mode), and come in two flavors:

• Commands that require no argument follow the syntax:

⌘command name҇

that is, the command symbol, followed by the name of the
command, followed by the “close command” symbol ҇.

• Commands that take one or more arguments follow the syntax:

⌘command name⟪argument block⟫

that is, the command symbol, followed by the name of the command,
followed by a block with the argument or arguments. For commands that
take more than argument, the arguments are still provided in one block,
but are delimited using list delimiters.

Examples

• ⌘bold on҇ turns on bold typing. This command does not take
an argument.

An Invitation to MadHat and Mathematical Typesetting 61

• ⌘bold⟪text to be typed in bold⟫ will typeset the text provided as
an argument in boldface.

• ⌘fraction⟪numeratorҔdenominator⟫ will typeset a fraction.

The behavior of a command can in some cases be modified by the
inclusion of additional optional arguments called attributes.

Math keywords

Math keywords are used in math mode to typeset mathematical
symbols such as Greek letters, the infinity symbol, an integral sign, etc.
They are meant to be easy to type, so they consist of just the keyword
itself without a preceding command symbol or a trailing command closing
symbol. In contrast to command names, keywords cannot contain a space
character.

As an example, entering sum_n a_n cos(2 pi n/3) = beta
produces the output ∑> !> cos(2π> / 3) = β
Here, the math keywords sum, cos, pi and beta are recognized.

Aliases

Both commands and math keywords can have an alias, which is an
alternative name for the same command. Some examples of commands
with aliases are:

• The command ⌘color⟪...⟫ has the alias ⌘colour⟪...⟫

• The math keyword integral has the alias int

An Invitation to MadHat and Mathematical Typesetting 62

• The math keyword product has the alias prod

• The command ⌘binomial⟪...⟫ has the alias ⌘binom⟪...⟫

• The command ⌘bezier⟪...⟫ has the alias ⌘bézier⟪...⟫

An Invitation to MadHat and Mathematical Typesetting 63

Attributes

Attributes modify the behavior of a command. They are included by
inserting an attributes block of the form

ҙ⟪attribute name←valueҔattribute name←valueҔ...Ҕattribute
name←value⟫

somewhere (it does not matter where) inside the argument block of the
command.

Boolean attributes

Boolean attributes take either of the values “yes” or “no”. You can specify
them in the straightforward way as ҙ⟪boolean att. name←yes⟫ or
ҙ⟪boolean att. name←no⟫, or using a shorthand notation that omits the
← assignment operator:

ҙ⟪boolean att. name⟫ is equivalent to ҙ⟪boolean att. name←yes⟫

ҙ⟪no boolean att. name⟫ is equivalent to ҙ⟪boolean att. name←no⟫

For example, a ҙ⟪no crop⟫ attribute in a ⌘graphics canvas⟪...⟫
specifies that cropping should be turned off.

Some attributes accept as argument a list of Boolean values. For example,
in a ⌘table⟪...⟫ command, the hlines attribute specifies which
horizontal lines should be drawn. This list of values is provided in the
form

att. name←xxxx...x

where each of the x symbols is either y (for “yes”) or n (for “n”).

An Invitation to MadHat and Mathematical Typesetting 64

Examples

See the documentation for paragraphs, the ⌘graphics canvas⟪...⟫
command and the ⌘table⟪...⟫ command for examples of the uses of
attributes.

An Invitation to MadHat and Mathematical Typesetting 65

Delimited lists and delimited tables

A delimited list is a block that takes the form

⟪1st delimited expressionҔ2nd delimited expressionҔ... Ҕlast
delimited expression⟫

This uses the “primary list delimiter” symbol Ҕ. When such a block is
passed as an argument to a command, the command can interpret each of
the delimited expressions as a separate argument.

In addition to primary list delimiters, an additional delimiter symbol is
the “secondary list delimiter” Ѽ which can be thought of as a “next line”
character for specifying two-dimensional arrays. In this way you can
succinctly specify tables and matrices for commands that are suitably
designed as delimiter-aware. For example, entering
⌘matrix⟪1Ҕ2Ҕ3Ѽ4Ҕ5Ҕ6⟫ in math mode will produce the output:(1 2 34 5 6)

An Invitation to MadHat and Mathematical Typesetting 66

Notebook configuration

The readability of a document depends not only on its content but also
on how the content is presented. makes available a collection of
customization options that allow you to modify the appearance of an
entire notebook and make it as engaging and aesthetically appealing as
possible. This collection is referred to as the notebook configuration.

The notebook configuration is specified using code in the
language, called the notebook configuration code. This code is
entered not in the usual code editing area, but through a separate editing
interface, the notebook configuration panel.

To access the notebook configuration panel, click the configuration icon in
the bottom-left corner of the notebook editor window:

An Invitation to MadHat and Mathematical Typesetting 67

notebook configuration icon

The notebook configuration panel will appear and allow you to edit the
configuration code, as shown in this screenshot:

An Invitation to MadHat and Mathematical Typesetting 68

In the configuration code, you specify the global behavior of the notebook
using notebook configuration commands; these are commands that
start with a double command symbol (⌘⌘). They can only be used as
part of the notebook configuration code.

The help pages linked below list the different aspects of the notebook
behavior you can customize using configuration commands, with
explanations about the relevant configuration commands and how to use
them:

• Customizing the notebook metadata

• Customizing the page geometry

• Customizing the notebook styles

• Customizing the notebook line and paragraph spacing

An Invitation to MadHat and Mathematical Typesetting 69

• Customizing the PDF export settings

You can include text, code comments, or any other type of
content in your configuration code in addition to configuration
commands. These have no effect on the notebook configuration.

When you create a new notebook, it will come equipped with a default
template for the configuration code. This makes it easy to start editing
the configuration settings.

An Invitation to MadHat and Mathematical Typesetting 70

Customizing the notebook metadata

The notebook metadata is information about the notebook that is not a
part of the notebook contents. Currently this refers to the notebook title
and author. You can set these fields using the following notebook
configuration commands:

• ⌘⌘notebook title⟪notebook title⟫

Set the notebook title

• ⌘⌘notebook author⟪notebook author⟫

Set the notebook author

When you export a notebook as a PDF, the title and author fields are
used to populate the corresponding fields in the PDF document
metadata. The notebook title is also displayed at the top of the viewer
window.

See also:

• Notebook configuration

• Customizing the page geometry

• Customizing the notebook styles

• Customizing the notebook line and paragraph spacing

• Customizing the PDF export settings

An Invitation to MadHat and Mathematical Typesetting 71

Customizing the notebook page
geometry

Page geometry refers to the page dimensions (height and width) as well
as the parameters affecting the positioning of the page content, and, in
the version of the notebook exported to PDF, the page header and footer.
All of these parameters can be customized through the use of appropriate
notebook configuration commands, discussed below.

The basic page geometry parameters are shown in the diagram below:

An Invitation to MadHat and Mathematical Typesetting 72

[pa ge body]

[pa ge hea der]

[pa ge footer]

left margin right margin

footer offset

header offset top margin

bottom margin

page width

page height

A point to note is that page headers and footers are only added when the
notebook is exported to PDF. Thus, the header offset and footer offset

An Invitation to MadHat and Mathematical Typesetting 73

parameter only apply to the PDF-exported version of the notebook.
Furthermore, when specifying the vertical (top and bottom) margins, you
can specify separate values for the vertical margins as viewed in the
viewer window, and for the margins to be used for PDF exporting. This
duplication facilitates making adjustments to account for the presence of
page headers and footers in the PDF-exported version.

By contrast, for left and right margin widths, the same value is used for
page layout in the viewer window and for the PDF-exported version of
the notebook.

Setting the page size

The page dimensions — a width and height measured in points — are the
default dimensions for the page viewer window (which can be resized to
an arbitrary size). They are also used to specify the page dimensions
when the notebook is exported as a PDF. You can set them using the
following commands:

• ⌘⌘page size⟪page widthҔpage height⟫

Set the page size (width and height), measured in points

• ⌘⌘page size⟪page size keyword⟫

Set the page size to one of the standard sizes given by the following
key words:

○ default

○ letter portrait (alias: letter)

○ letter landscape

○ a4 portrait (alias: a4)

An Invitation to MadHat and Mathematical Typesetting 74

○ a4 landscape

○ large

Setting additional page geometry parameters

The page geometry parameters other than the page dimensions can be
customized using the following commands:

• ⌘⌘left margin⟪left margin width⟫

Set the page left margin width, measured in points.

• ⌘⌘right margin⟪right margin width⟫

Set the page right margin width, measured in points.

• ⌘⌘top margin⟪top margin height⟫

Set the top margin height, measured in points.

• ⌘⌘bottom margin⟪bottom margin height⟫

Set the bottom margin height, measured in points.

• ⌘⌘exported top margin⟪top margin height⟫

Set the top margin height in the version of the notebook exported
to PDF, measured in points.

• ⌘⌘exported bottom margin⟪bottom margin height⟫

Set the bottom margin height in the version of the notebook
exported to PDF, measured in points.

• ⌘⌘exported header offset⟪offset⟫

An Invitation to MadHat and Mathematical Typesetting 75

Set the header offset in the version of the notebook exported to
PDF, measured in points.

• ⌘⌘exported footer offset⟪offset⟫

Set the header offset in the version of the notebook exported to
PDF, measured in points.

See also:

• Notebook configuration

• Customizing the notebook metadata

• Customizing the notebook styles

• Customizing the notebook line and paragraph spacing

• Customizing the PDF export settings

An Invitation to MadHat and Mathematical Typesetting 76

Customizing the notebook styles

A style is a set of parameters specifying the way text is formatted, i.e.,
which font and font weight it is set in, its color, etc. In the notebook
configuration code you can define a set of styles to use in your
notebook. Each style has a name. Certain style names are reserved to
specify standard, predefined types of text (for example, default refers
to the default style used for normal text; header is the style name used
for headers). Other names can be used to define custom styles to suit
your own particular needs.

The syntax for defining styles is as follows:

• ⌘⌘define style⟪style nameҔlist of style commands⟫

Defines a named style. This can be either one of the standard
names for predefined styles, or a custom style name to be used in a
⌘styled⟪...⟫ text styling wrapper. The standard predefined
style names are:

○ default

○ url hyperlink

○ text hyperlink

○ intralink

○ header

○ subheader

○ subsubheader

○ paraheader

An Invitation to MadHat and Mathematical Typesetting 77

○ superheader

Style inheritance. When you define a style, including the attribute
inherits from←style name in the command argument block specifies
that the style you are defining should inherit its properties from another
style you already defined. This allows endowing the set of styles with a
hierarchical structure.

For example, the default notebook configuration code defines a set of
styles with the following commands:

Ѿ Start by defining a base style all other styles
will inherit from	
⌘⌘define style⟪baseҔѾ	
⌘font size⟪14⟫％	
⌘font cluster⟪Latin Modern⟫％	
⟫

Ѿ Now define the default style for normal text	
⌘⌘define style⟪defaultҔѾ	
ҙ⟪inherits from←base⟫％	
Ѿ add styling commands here if you want the
default style to differ from the base style	
⟫

Ѿ Style definitions for links	
⌘⌘define style⟪％	
ҙ⟪inherits from←base⟫％	
linkҔ⌘bold on҇Ѿ	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←link⟫％	
hyperlinkҔ⌘color⟪0.1Ҕ0Ҕ0.65⟫％	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←hyperlink⟫％	
text hyperlinkҔѾ	
⟫

An Invitation to MadHat and Mathematical Typesetting 78

⌘⌘define style⟪％	
ҙ⟪inherits from←hyperlink⟫％	
url hyperlinkҔ⌘font⟪Latin Modern Sans⟫％	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←link⟫％	
intralinkҔ⌘color⟪0.6Ҕ0.05Ҕ0⟫％	
⟫

Ѿ Style definitions for headers	
⌘⌘define style⟪％	
ҙ⟪inherits from←base⟫％	
headers baseҔ⌘bold on҇Ѿ	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←headers base⟫％	
superheaderҔ⌘font size⟪32⟫⌘color⟪0.7Ҕ0Ҕ0⟫％	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←headers base⟫％	
headerҔ⌘font size⟪24⟫％	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←headers base⟫％	
subheaderҔ⌘font size⟪18⟫％	
⟫

⌘⌘define style⟪％	
ҙ⟪inherits from←headers base⟫％	
subsubheaderҔ⌘font size⟪14⟫％	
⟫

An Invitation to MadHat and Mathematical Typesetting 79

⌘⌘define style⟪％	
ҙ⟪inherits from←headers base⟫％	
paraheaderҔ⌘font size⟪14⟫％	
⟫

This creates hierarchical inheritance relationships between the named
styles illustrated in the diagram below:

base

default link

intralinkhyperlink

text hyperlink
url hyperlink

headers base

header

subheader

subsubheader

superheader

paraheader

Given such an inheritance structure, making a change to one style affects
that style and potentially all others that inherit from it. This makes it
easier to achieve a consistent look for your notebook and to quickly make
changes when you want to, in such a way that the change will affect
precisely the set of styles it should logically apply to.

An Invitation to MadHat and Mathematical Typesetting 80

See also:

• Styling text

• Headers and subheaders

• Hyperlinks and intralinks

• Notebook configuration

• Customizing the notebook metadata

• Customizing the page geometry

• Customizing the notebook line and paragraph spacing

• Customizing the PDF export settings

An Invitation to MadHat and Mathematical Typesetting 81

Line and paragraph spacing

In the notebook configuration code you can specify the settings for
line spacing and paragraph spacing.

Line spacing

• ⌘⌘line spacing⟪relative spacing⟫

Set the line spacing, in units of the predefined height of a line in the
current text font. The default spacing value is 1.0.

Paragraph spacing

The vertical space inserted between paragraphs is known as the
paragraph spacing. In our terminology, “paragraph” can refer to
document elements such as headers, subheaders, list items, etc. This
means that customization of the paragraph spacing involves specifying
not just a single number, but rather a collection of numbers that govern
the spacings between different types of paragraphs according to the
logical role they play in the document. classifies each paragraph
as being one of the following 9 logical types:

1. normal text paragraph

2. header

3. subheader

4. subsubheader

5. paragraph header

An Invitation to MadHat and Mathematical Typesetting 82

6. superheader

7. list item

8. beginning of a box

9. end of a box

To specify the paragraph spacing data, first you need to specify the base
paragraph spacing — a reference value that all other paragraph
spacing parameters use as a unit. The syntax for customizing this value
is:

• ⌘⌘base paragraph spacing⟪spacing in font units⟫

The default value for this parameter is 1.0, corresponding to a spacing
equal to the current font size, in points.

Having defined the base paragraph spacing, you can now specify how
much vertical space is inserted before and after a paragraph of each
logical type. These spacing values are provided in a two-line array
(entered using delimited list notation) according to the following
syntax:

•

⌘⌘paragraph before and after spacings⟪％	
...list of pre-paragraph spacing values...ѼѾ	
...list of post-paragraph spacing values...Ѿ	
⟫

with each of the two lists consisting of 9 spacing values, in units of
the base paragraph spacing.

Example. The command

⌘⌘paragraph before and after spacings⟪％	
0Ҕ0Ҕ1.5Ҕ0Ҕ0Ҕ0Ҕ0Ҕ0Ҕ0ѼѾ	
0Ҕ0Ҕ0Ҕ0Ҕ0Ҕ0Ҕ0Ҕ0Ҕ2Ѿ	
⟫

An Invitation to MadHat and Mathematical Typesetting 83

specifies that 1.5 spacing units are inserted before a subheader, 2
spacing units are inserted after the end of a box, and no other
paragraph spacings are inserted.

Paragraph spacing at the top of a page

It is sometimes desirable to insert a vertical space at the top of a page
before certain logical types of paragraphs (for example a superheader, if
you use such headers for chapter headings). You can specify these spacing
values using the following commands:

•
⌘⌘top of page preparagraph spacings⟪list of spacing values⟫

Here, list of spacing values is a list of 9 values, entered using
delimited list notation, corresponding to the 9 logical paragraph
types.

These spacing values are set to 0 by default.

Setting the paragraph spacings matrix

In addition to the commands mentioned above, offers a more
advanced method for specifying the paragraph spacings that allows
customizing the vertical space inserted between ea ch pa ir of logical
paragraph types. This is done by entering a matrix of spacing values,
which we refer to the as the paragraph spacings matrix.

⌘⌘paragraph spacings matrix⟪spacings matrix⟫

Here, kerning matrix is a 9 × 9 table of, entered using delimited list
notation, of the form

An Invitation to MadHat and Mathematical Typesetting 84

⎝

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜ E11 E12 E13 E14 E15 E16 E17 E18 E19E21 E22 E23 E24 E25 E26 E27 E28 E29E31 E32 E33 E34 E35 E36 E37 E38 E39E41 E42 E43 E44 E45 E46 E47 E48 E49E51 E52 E53 E54 E55 E56 E57 E58 E59E61 E62 E63 E64 E65 E66 E67 E68 E69E71 E72 E73 E74 E75 E76 E77 E78 E79E81 E82 E83 E84 E85 E86 E87 E88 E89E91 E92 E93 E94 E95 E96 E97 E98 E99 ⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟

Each number EIJ in row I and column J of the table, for I , J = 1 , 2 , … , 9,
specifies the vertical spacing that will be inserted after a paragraph of
logical type I that is followed by a paragraph of logical type J in the list
of paragraph types above.

Note that it is only paragraphs with visible content that have an effect on
paragraph spacings. Code paragraphs that do not produce any visible
content, for example a paragraph containing only a code comment

Ѿa comment

or a paragraph containing only a

⌘begin list.

command, will not have any effect on the paragraph spacings.

Setting the paragraph indent

• ⌘⌘paragraph indent⟪paragraph indent width in font units⟫

Set the paragraph indent width, measured in units of the current

An Invitation to MadHat and Mathematical Typesetting 85

font size.

See also:

• Notebook configuration

• Customizing the notebook metadata

• Customizing the page geometry

• Customizing the notebook styles

• Customizing the PDF export settings

An Invitation to MadHat and Mathematical Typesetting 86

Customizing the notebook PDF
export settings

Using the commands listed below, you can customize the way in which
the notebook is formatted when it is exported to PDF.

• ⌘⌘exported page header⟪page header⟫

Set the page header for the version of the notebook exported as a
PDF

• ⌘⌘exported page footer⟪page footer⟫

Set the page footer for the version of the notebook exported as a
PDF

• ⌘⌘exported page number҇

When inserted inside the argument block for either the
⌘⌘exported page footer⟪...⟫ command or the
⌘⌘exported page header⟪...⟫ command, this will display as
the page number on each page in the PDF-exported notebook.

• The headers and footers specified in the
⌘⌘exported page header⟪...⟫ and
⌘⌘exported page footer⟪...⟫ commands are by default
added to all the pages in the exported PDF document. To add the
header and footer only for a specified range of notebook pages, use
the command

⌘⌘exported header and footer range⟪start indexҔ
end index⟫

An Invitation to MadHat and Mathematical Typesetting 87

where start index and end index are the indices of the first and last
notebook pages, respectively, to which the header and footer should
be added. If end index is left unspecified (that is, the argument
block for it is an empty string), it is taken as the index of the last
page in the notebook.

See also:

• Notebook configuration

• Customizing the notebook metadata

• Customizing the page geometry

• Customizing the notebook styles

• Customizing the notebook line and paragraph spacing

An Invitation to MadHat and Mathematical Typesetting 88

Paragraphs

The word “paragraph” traditionally refers to a logically connected block
of content in a document. Here, we wish to make a distinction between
code paragraphs, which are contiguous blocks of code in the
editor window that are processed by the app in a particular way; and
semantic paragraphs, which are logical blocks of content in the
formatted notebook page, and correspond more closely to the traditional
notion of a paragraph.

For notebook content consisting only of text, code paragraphs are in a
one-to-one correspondence with semantic paragraphs, so the distinction
between the two is not very important. However, for reasons that will be
explained below, when your notebook content contains math display, the
association between code paragraphs and semantic paragraphs will in
general be many-to-one, so it is important to discuss both notions of a
paragraph and how one gets mapped into the other.

Code paragraphs

When you enter your code in the editor window, divides it as you
type into code paragraphs, with each code paragraph being marked
with a small marker to the left of the code. A code paragraph is
terminated with two or more newline characters, and the next paragraph
starts at the first non-newline character following those newline
characters. The successive newline characters separating code paragraphs
are not considered as belonging to any paragraphs.

(By contrast, a single newline character inside a code paragraph will not
terminate it but will be considered as part of the content of that
paragraph.)

An Invitation to MadHat and Mathematical Typesetting 89

The logic behind code paragraphs

The division of code into paragraphs forms a crucial part of ’s
parsing and typesetting algorithms, in the following way: each paragraph
of code is sent to the parser for processing that results in a block
of content being typeset in the notebook page viewer. This is done for all
paragraphs in a page when you open an existing notebook, or
incrementally as you type or edit code: for each code editing operation,
only the paragraph in which the edit is made gets re-processed, saving the
computational work of re-processing the entire page’s code.

(To be even more precise: some edits will affect more than one code
paragraph, for example causing two existing paragraphs to coalesce, or
splitting a single paragraph into two, or changing the text typing style in
a way that propagates to the next paragraphs on your page; ’s
algorithm handles that appropriately by processing the minimal number
of paragraphs to ensure the correct formatting of your page content.)

Text paragraphs and math paragraphs

Code paragraphs are classified as belonging to one of two types: text
paragraphs, and math paragraphs. Each of the types is parsed
according to different rules and typeset using a different algorithm.

Code paragraphs are parsed as text paragraphs by default. Paragraphs
beginning with the paragraph math mode shift prefix M̂: (see also:
special symbols) are parsed as math paragraphs, and are formatted as
math displays (see also: typing mathematics).

Attributes of code paragraphs

A code paragraph is considered by the parser as a type of block,
even though it is not surrounded by an open block/close block symbol
pair. In particular, you can include in a code paragraph an attributes

An Invitation to MadHat and Mathematical Typesetting 90

block to modify its behavior in the same way that an attributes block
can modify the behavior of a command argument block.

Currently there is only one supported attribute, for specifying the
paragraph text alignment type:

• align←alignment type

Specifies the paragraph alignment type: left (the default for text
paragraphs), right, or center (the default for math paragraphs).

Semantic paragraphs

What we call a semantic paragraph corresponds to the traditional notion
of a paragraph in a written document: that is, a block of content that
occupies its own vertical space on the page and is visually separated from
the surrounding content (using paragraph indentation and/or paragraph
spacing).

For a page containing only text, each code paragraph will get formatted
as a single semantic paragraph. However, when mathematical content is
included, the association between code paragraphs and semantic
paragraphs becomes more complicated. The reason is that according to
the rules of mathematical writing, mathematical displays — which are
the formatted result of a math (code) paragraph — are considered a part
of the semantic paragraph of the text that precedes them, and sometimes
(but not always) of the text that follows them. For example, the following
content constitutes a single semantic paragraph:

A power series is a function of a complex variable 3 that is
defined by K(3) = ∑> = 0

∞ !> 3> ,

An Invitation to MadHat and Mathematical Typesetting 91

where (!>)> = 0∞ is a sequence of complex numbers, or more generally
by M(3) = K(3 − 30) = ∑> = 0

∞ !>(3 − 30)> ,
where (!>)> = 0∞ is again a sequence and 30 is some fixed complex
number. These functions are defined whenever the respective series
converges.

The code that produces this semantic paragraph is made up of five code
paragraphs:

A power series is a function of a complex variable
M̂⟪z⟫ that is defined by	

M̂: M̂: f(z) = sum_⟪n=0⟫^⟪infty⟫ a_n z^n,	

where M̂⟪(a_n)_⟪n=0⟫^⟪infty⟫⟫ is a sequence of
complex numbers, or more generally by	

M̂: M̂: g(z) = f(z-z_0) = sum_⟪n=0⟫^⟪infty⟫ a_n (z-
z_0)^n,	

where M̂⟪(a_n)_⟪n=0⟫^⟪infty⟫⟫ is again a sequence and
M̂⟪z_0⟫ is some fixed complex number. These
functions are defined whenever the respective
series converges.	

This example raises the question of how to control where semantic
paragraphs begin and end — an issue that will affect where vertical
spacing between paragraphs is inserted, and other subtle factors that

An Invitation to MadHat and Mathematical Typesetting 92

affect the look and readability of your content. We address this question
next.

Controlling the boundaries of a semantic paragraph

tries to guess where you wish for a semantic paragraph to end,
by following common sense rules that apply in the majority of cases, so
that most of the time you do not need to do anything special other than
writing out your content. The rules are as follows:

• any math paragraph is considered by default to be a part of the
same semantic paragraph as the code paragraph preceding it (if
there is one);

• any text paragraph is by default marked as starting a new semantic
paragraph if it follows a text paragraph (or if it is the first
paragraph on the page), but marked as belonging to the same
semantic paragraph as the preceding code paragraph if that
preceding code paragraph is a math paragraph.

One common situation in which the above default assumptions do not
hold is when a math display comes at the end of a semantic paragraph. In
that case, the text paragraph that follows it should start a new semantic
paragraph. To indicate to that that is what you are intending,
add the command

⌘new paragraph҇

at the beginning of the text paragraph that follows the math display.

Paragraph indentation

has the ability to add an automatic indentation at the beginning

An Invitation to MadHat and Mathematical Typesetting 93

of a new semantic paragraph. The indentation width is set to 0 by
default, but can be customized in the notebook configuration code;
see the help page on customizing line and paragraph spacings and
paragraph indents

When automatic paragraph indentation is enabled, you can suppress the
paragraph indentation in any individual text paragraph by including the
command ,

⌘suppress paragraph indent҇

or its alias

⌘no indent҇

at the beginning of the paragraph.

Multi-justified lines

It is sometimes useful to have a paragraph consisting of a single line split
into two parts, the first of which is justified to the left, and the second of
which is justified to the right; or to have a paragraph with a single line
with three parts, justified to the left, center and right, respectively. We
call such paragarph-like constructs multi-justified lines. They can be
entered using the following commands:

• ⌘left right line⟪left side text�right side text⟫

A line of text with two parts, the first being left-justified and the
second being right-justified.

•
⌘left center right line⟪left side text�center text�right side text⟫

An Invitation to MadHat and Mathematical Typesetting 94

A line of text with three parts, the first being left-justified, the
second being centered, and the third being right-justified.

The commands ⌘left right line⟪...⟫ and
⌘left center right line⟪...⟫ both accept the boolean
attributes overline and underline.

An Invitation to MadHat and Mathematical Typesetting 95

Styling text

offers two main mechanisms for styling your text.

• Using styling commands that directly affect the styling attributes of
your text. These commands are described in the following help
pages:

○ Bold text formatting

○ Italic text formatting

○ Underlining

○ Strikethrough

○ Highlighting

○ Text substitutions

○ Setting fonts

○ Setting the font size

○ Colors

• You can also define custom named styles in the notebook
configuration code using the ⌘⌘define style⟪...Ҕ...⟫
configuration command. You can then apply the style to arbitrary
blocks of text using the command

⌘styled⟪style nameҔcontent to style⟫

An Invitation to MadHat and Mathematical Typesetting 96

Styling text in boldface

The following commands are used to style text in boldface:

• ⌘bold on҇

Turns on bold styling.

• ⌘bold off҇

Turns off bold styling.

• ⌘bold text⟪...text...⟫
⌘bold⟪...text...⟫

A wrapper for text that should be styled in boldface.

These commands do not affect the styling of mathematical symbols. See
the help page on mathematical font variants.

Examples

The code

ҙ⟪align←center⟫⌘bold⟪This text is styled in bold.⟫

will typeset as

This text is styled in boldface.

See also

• Mathematical font variants

An Invitation to MadHat and Mathematical Typesetting 97

Styling text in italic

The following commands are used to style text in italic:

• ⌘italic on҇

Turns on italic styling.

• ⌘italic off҇

Turns off italic styling.

• ⌘italic text⟪...text...⟫
⌘italic⟪...text...⟫

A wrapper for text that should be styled in italic.

These commands do not affect the styling of mathematical symbols. See
the help page on mathematical font variants.

Examples

The code

ҙ⟪align←center⟫⌘italic⟪This text is styled in
italic.⟫

will typeset as

This text is styled in ita lic.

See also

An Invitation to MadHat and Mathematical Typesetting 98

• Mathematical font variants

An Invitation to MadHat and Mathematical Typesetting 99

Underlining text

The following commands are used to underline text:

• ⌘underline on҇

Turns on text underlining.

• ⌘underline off҇

Turns off text underlining.

• ⌘underline⟪...text...⟫

A wrapper for text that should be underlined.

Examples

The code

ҙ⟪align←center⟫⌘underline⟪This text is
underlined.⟫

will typeset as

This text is underlined.

See also

• Mathematical symbol decorations

An Invitation to MadHat and Mathematical Typesetting 100

Striking through text

The following commands are used to strike through text:

• ⌘strikethrough on҇

Turns on text strikethrough.

• ⌘strikethrough off҇

Turns off text strikethrough.

• ⌘strikethrough⟪...text...⟫

A wrapper for text that should be struck through.

Examples

The code

ҙ⟪align←center⟫⌘strikethrough⟪This text is struck
through.⟫

will typeset as

This text is struck through.

An Invitation to MadHat and Mathematical Typesetting 101

Highlighting text

The following commands are used to highlight text:

• ⌘highlight on҇

Turns on highlighted text styling.

• ⌘highlight off҇

Turns off highlighted text styling.

• ⌘highlight⟪...text...⟫

A wrapper for text that should be highlighted.

You can highlight text in different colors using the
⌘highlight color⟪...⟫ command. See the help page on colors.

Examples

The code

ҙ⟪align←center⟫⌘highlight⟪This text is
highlighted.⟫

will typeset as

This text is highlighted.

The code

ҙ⟪align←center⟫⟪⌘highlight color⟪pink⟫
⌘highlight⟪This text is highlighted in a different
color.⟫⟫

An Invitation to MadHat and Mathematical Typesetting 102

will typeset as

This text is highlighted in a different color.

See also

• Colors

An Invitation to MadHat and Mathematical Typesetting 103

Text substitutions

Text substitutions are operations that transform the text you enter by
examining each character of the specified text and potentially replacing it
with a different character. The following substitutions are available:

• ⌘lowercase⟪text⟫

A wrapper for text that should be converted to lowercase

• ⌘uppercase⟪text⟫

A wrapper for text that should be converted to uppercase

• ⌘redact⟪text⟫

A wrapper for text that should be presented in redacted form

• ⌘obfuscate⟪text⟫

A wrapper for text that should be presented in (mildly) obfuscated
form

Text substitutions are only applied to content entered in text mode.
Mathematical symbols are unchanged.

Examples

• Original text:

Alice was beginning to get very tired of sitting by her sister on the
bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, “and what is the use of a book,” thought Alice

An Invitation to MadHat and Mathematical Typesetting 104

“without pictures or conversations?”

• Applying a ⌘lowercase⟪...⟫ substitution:

alice was beginning to get very tired of sitting by her sister on the
bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, “and what is the use of a book,” thought alice
“without pictures or conversations?”

• Applying a ⌘uppercase⟪...⟫ substitution:

ALICE WAS BEGINNING TO GET VERY TIRED OF SITTING
BY HER SISTER ON THE BANK, AND OF HAVING NOTHING
TO DO: ONCE OR TWICE SHE HAD PEEPED INTO THE
BOOK HER SISTER WAS READING, BUT IT HAD NO
PICTURES OR CONVERSATIONS IN IT, “AND WHAT IS THE
USE OF A BOOK,” THOUGHT ALICE “WITHOUT PICTURES
OR CONVERSATIONS?”

• Applying a ⌘redact⟪...⟫ substitution:

***** *** ********* ** *** **** ***** ** ******* ** *** ******
** *** ***** *** ** ****** ******* ** *** **** ** ***** *** ***
****** **** *** **** *** ****** *** ******** *** ** *** **
******** ** ************* ** *** **** **** ** *** *** ** *
****** ******* ***** ******** ******** ** ***************

• Applying a ⌘obfuscate⟪...⟫ substitution:

Bmjdf xbt cfhjoojoh up hfu wfsz ujsfe pg tjuujoh cz ifs tjtufs po uif
cbol, boe pg ibwjoh opuijoh up ep: podf ps uxjdf tif ibe qffqfe joup
uif cppl ifs tjtufs xbt sfbejoh, cvu ju ibe op qjduvsft ps
dpowfstbujpot jo ju, “boe xibu jt uif vtf pg b cppl,” uipvhiu Bmjdf
“xjuipvu qjduvsft ps dpowfstbujpot?”

An Invitation to MadHat and Mathematical Typesetting 105

Setting fonts

typesets text and mathematical expressions using two different
fonts: the text font and math font. You can configure each of those
fonts separately, or, for certain pre-configured pairs of matching fonts, set
both of them together in a single command. The syntax for font-setting
commands is as follows.

• ⌘font⟪font name⟫

Set the text font. The default is Latin Modern Roman.

• ⌘math font⟪font name⟫

Set the math font. This should be a font that supports the
Unicode mathematical symbols that you wish to use in your
mathematical expressions. comes prepackaged with five
mathematical fonts:

○ Latin Modern Math (the default)

○ TeX Gyre Termes Math

○ TeX Gyre Bonum Math

○ TeX Gyre Schola Math

○ TeX Gyre Pagella Math.

These are free and open source fonts developed by the GUST
e-foundry. Each of the five math fonts is also accompanied by a
family of matching ordinary text fonts (for example, Latin Modern
Math is accompanied by Latin Modern Roman, Latin Modern Sans,
Latin Modern Sans, and several other fonts in the Latin Modern

An Invitation to MadHat and Mathematical Typesetting 106

https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode
https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode
https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode
https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode
https://en.wikipedia.org/wiki/Mathematical_operators_and_symbols_in_Unicode
http://www.gust.org.pl/projects/e-foundry
http://www.gust.org.pl/projects/e-foundry
http://www.gust.org.pl/projects/e-foundry

family).

• ⌘font cluster⟪font family name⟫.

Set the text and math fonts simultaneously to matching fonts
belonging to one of the five font families bundled with the app.

○ ⌘font cluster⟪latin modern⟫

Use the Latin Modern Roman and Latin Modern Math fonts

○ ⌘font cluster⟪termes⟫

Use the TeX Gyre Termes and TeX Gyre Termes Math fonts

○ ⌘font cluster⟪bonum⟫

Use the TeX Gyre Bonum and TeX Gyre Bonum Math fonts

○ ⌘font cluster⟪schola⟫

Use the TeX Gyre Schola and TeX Gyre Schola Math fonts

○ ⌘font cluster⟪pagella⟫

Use the TeX Gyre Pagella and TeX Gyre Pagella Math fonts

Examples

• ⌘font⟪Helvetica⟫Some text in Helvetica

Some text in Helvetica.

• ⌘font⟪Courier⟫Some text in Courier

Some text in Courier

• ⌘font⟪Georgia⟫Some text in Georgia

An Invitation to MadHat and Mathematical Typesetting 107

Some text in Georgia

•
⌘font cluster⟪latinmodern⟫Some text and some math:
M̂⟪sum_⟪n=1⟫^⟪infty⟫ ⌘frac⟪1Ҕn^2⟫ = ⌘frac⟪pi^2Ҕ6⟫⟫,
set in the Latin Modern font cluster

Some text and some math: ∑> = 1∞ 1>2 = π26 , set in the Latin Modern
font cluster

• ⌘font cluster⟪termes⟫Some text and some math:
M̂⟪sum_⟪n=1⟫^⟪infty⟫ ⌘frac⟪1Ҕn^2⟫ = ⌘frac⟪pi^2Ҕ6⟫⟫,
set in the Termes font cluster

Some text and some math: ∑"=1∞ 1"2 = π26 , set in the Termes font cluster

• ⌘font cluster⟪bonum⟫Some text and some math:
M̂⟪sum_⟪n=1⟫^⟪infty⟫ ⌘frac⟪1Ҕn^2⟫ = ⌘frac⟪pi^2Ҕ6⟫⟫,
set in the Bonum font cluster

Some text and some math: ∑"= 1∞ 1"2 = π26 , set in the Bonum
font cluster

• ⌘font cluster⟪schola⟫Some text and some math:
M̂⟪sum_⟪n=1⟫^⟪infty⟫ ⌘frac⟪1Ҕn^2⟫ = ⌘frac⟪pi^2Ҕ6⟫⟫,
set in the Schola font cluster

Some text and some math: ∑"=1∞ 1"2 = π26 , set in the Schola font
cluster

• ⌘font cluster⟪pagella⟫Some text and some math:
M̂⟪sum_⟪n=1⟫^⟪infty⟫ ⌘frac⟪1Ҕn^2⟫ = ⌘frac⟪pi^2Ҕ6⟫⟫,
set in the Pagella font cluster

Some text and some math: ∑"=1∞ 1"2 = π26 , set in the Pagella font
cluster

An Invitation to MadHat and Mathematical Typesetting 108

Setting the font size

• ⌘font size⟪font size in points⟫

Set the base font size for both text and mathematical expressions

Examples

⌘font size⟪12⟫The quick brown fox jumps over a
lazy dog

The quick brown fox jumps over a lazy dog

⌘font size⟪20⟫The quick brown fox jumps over a
lazy dog

The quick brown fox jumps over a lazy dog

An Invitation to MadHat and Mathematical Typesetting 109

Colors

Setting colors

• ⌘color⟪color argument⟫
⌘colour⟪color argument⟫

Set the primary (text) color

• ⌘highlight color⟪color argument⟫
⌘highlight colour⟪color argument⟫

Set the text highlight color

• ⌘box frame color⟪color argument⟫
⌘box frame colour⟪color argument⟫

Set the frame color for boxes

• ⌘box background color⟪color argument⟫
⌘box background colour⟪color argument⟫

Set the background color for boxes

• ⌘page background color⟪color argument⟫
⌘page background colour⟪color argument⟫

Set the background color for the page

• ⌘fill color⟪color argument⟫
⌘fill colour⟪color argument⟫

Set the fill color for filled graphics shape

• ⌘stroke color⟪color argument⟫
⌘stroke colour⟪color argument⟫

An Invitation to MadHat and Mathematical Typesetting 110

Set the stroke color for stroked graphics shapes

Format for a color

Each of the commands above takes a color argument, whose format is
specified as either:

• the name of a named color such as “red”, “gray”, “orange”, “
teal”, etc.;

• a block of the form ⟪redҔgreenҔblue⟫ where each of the three
delimited subblocks is a floating point value between 0 and 1,
representing the red, green and blue components, respectively;

• a block of the form ⟪redҔgreenҔblueҔalpha⟫ where each of the
four delimited subblocks is a floating point value between 0 and 1,
representing the red, green, blue and alpha components,
respectively.

Available named colors

An Invitation to MadHat and Mathematical Typesetting 111

blue white

red gray

orange dark grey

purple black

green dark gray

magenta yellow

cyan pink

brown light gray

light grey teal

grey

Examples

• Some text in blue: Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.

• Some text in orange: Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.

• Some text highlighted in pink: Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.

An Invitation to MadHat and Mathematical Typesetting 112

Headers and subheaders

Headers can be used to give your document a hierarchical structure with
several levels. The default level is called “header”; below it are
“subheader”, “subsubheader”, and “paragraph header”. Above the default
level is one level called “superheader”, which can be used in very long
documents (e.g., as chapter headings in a book) but is otherwise
unnecessary.

Headers at the header, subheader and subsubheader levels can be clicked
to collapse and expand the contents of the section they demarcate.

The commands for headers are:

• ⌘header⟪...header text...⟫

A header

• ⌘subheader⟪...subheader text...⟫

A subheader

• ⌘subsubheader⟪...subsubheader text...⟫

A subsubheader

• ⌘paragraph header⟪...paragraph header text...⟫
⌘paraheader⟪...paragraph header text...⟫

A paragraph header

• ⌘superheader⟪...superheader text...⟫

A superheader

The commands for all header types except for paragraph headers should
appear on their own paragraph with no additional content.

An Invitation to MadHat and Mathematical Typesetting 113

Customizing header styles

The help page on notebook configuration explains how to customize
the appearance of headers.

Examples

A superheader

A header

A subheader

A subsubheader

A paragraph header. Some text in a paragraph with a header.

An Invitation to MadHat and Mathematical Typesetting 114

Lists and outlining

supports ordered and unordered lists, including nested lists. Lists
also function as outliner structures that can be dynamically collapsed
and expanded.

The syntax for lists and list items is as follows:

• ⌘begin list҇

Start a new list or sublist. This command should appear on its own
paragraph with no additional content.

• ⌘end list҇

Close the current list or sublist. This command should appear on its
own paragraph with no additional content.

• *

Start a new unordered list item. The code * (an asterisk followed
by a space) must be at the beginning of a code paragraph in order
to be interpreted as a list item command.

• *.

Start a new ordered list item. The code *. (an asterisk followed
by a period followed by a space) must be at the beginning of a code
paragraph in order to be interpreted as a list item command.

Lists as outliners

When you click on the marker of a list item (e.g., a bullet, or the number
marking an item in an ordered list), the content of the item will toggle

An Invitation to MadHat and Mathematical Typesetting 115

https://en.wikipedia.org/wiki/Outliner

between the collapsed and expanded state. The default behavior for
collapsing is to hide all the content below the opening paragraph of the
item, up to the beginning of the next list item or to the closing of the
current list or sublist. This behavior can be modified by adding a
⌘collapsehere. command somewhere in the opening paragraph of
the item.

• ⌘collapse here҇

Marks the point in the content of a list item beyond which the
item’s content will collapse when the item is clicked.

Example

Here is an example of a hierarchical list. Try clicking on the item markers
to experiment with the outliner feature.

There are many types of birds in Australia, including:

1. nocturnal birds

1.1. frogmouths

Frogmouths are named for their large flattened hooked bill
and huge frog-like gape, which they use to capture insects.
Their flight is weak. They rest horizontally on branches
during the day, camouflaged by their cryptic plumage. Up to
three white eggs are laid in the fork of a branch, and are
incubated by the female at night and the male in the day. The
three Podargus species are large frogmouths restricted to
Australia and New Guinea, that have massive flat broad bills.

1.2. nightjars

Nightjars are medium-sized nocturnal or crepuscular birds in

An Invitation to MadHat and Mathematical Typesetting 116

the family Caprimulgidae / and order Caprimulgiformes,
characterised by long wings, short legs, and very short bills.
They are sometimes called goatsuckers, due to the ancient
folk tale that they sucked the milk from goats (the Latin for
goatsucker is caprimulgus), or bugeaters,[1] their primary
source of food being insects. Some New World species are
called nighthawks. The English word “nightjar” originally
referred to the European nightjar.

Nightjars are found all around the world, with the exception
of Antarctica and certain island groups such as Madagascar
and the Seychelles. They can be found in a variety of
habitats, most commonly the open country with some
vegetation. They usually nest on the ground, with a habit of
resting and roosting on roads.

1.3. owls

Owls are birds from the order Strigiformes (/ which includes
over 200 species of mostly solitary and nocturnal birds of prey
typified by an upright stance, a large, broad head, binocular
vision, binaural hearing, sharp talons, and feathers adapted
for silent flight. Exceptions include the diurnal northern
hawk-owl and the gregarious burrowing owl.

2. marsh birds

2.1. crakes

2.2. grebes

2.3. snipes

An Invitation to MadHat and Mathematical Typesetting 117

Tables

To format a table, use one of the commands below. Tabular content is
entered using primary and secondary list delimiter notation to
indicate column and row boundaries. An optional attributes block can
be provided to modify the appearance of the table.

• ⌘table⟪table cells⟫

A table of left-justified (by default; this is modifiable) text cells

• ⌘math table⟪table cells⟫

A table of centered (by default; this is modifiable) cells that is
vertically centered with respect to the math axis.

See also: Matrices

Attributes to modify the appearance of a table

• hlines←lines specification

A specification of horizontal cell border lines.

In a table with E rows, the specification should be a list of E + 1
Boolean attribute specifiers (y or n) to specify which horizontal
lines are drawn, from top to bottom.

For example, in a table with 4 rows, providing the specification
hlines←yynny would format as follows:

An Invitation to MadHat and Mathematical Typesetting 118

First name Last name Student ID GPA
Mickey Mouse 1 3.5
Donald Duck 2 3
Minnie Mouse 3 3.8

• vlines←lines specification

A specification of vertical cell border lines.

The specification follows the same format as the specification for
horizontal lines, except that there should be > + 1 Boolean
attribute specifiers, where > is the number of columns in the
table

• alignments←cell alignments specification

A specification of the horizontal cell alignments.

The specification should be a list xxxx...x of > characters, each
specifying the alignment for one of the table columns. The allowed
values are ‘l’ (for “left”), ‘r’ (for “right”), and ‘c’ (for “center”).

• header rows←header rows specification

A specification of the header rows: a list of E Boolean attribute
specifiers, where E is the number of rows in the table, specifying
which of the rows are header rows

• header columns←header columns specification

A specification of the header columns: a list of > Boolean
attribute specifiers, where > is the number of columns in the
table, specifying which of the columns are header columns

• frame, no frame

An Invitation to MadHat and Mathematical Typesetting 119

A Boolean specifying whether a frame is drawn around the table.
Defaults to no.

• Specifying color fills for table cells

○ fill, no fill

A boolean value specifying whether uniform fill (a colored
background for all table cells) is enabled. Defaults to no.

○ alternating fill, no alternating fill

A boolean value specifying whether alternating row fill (a
colored background for all table cells in alternating rows) is
enabled. Defaults to no

○ fill color←color argument

The fill color for uniform fills

○ alt fill color←color argument

The alternating fill color, to be used for the alternating row
fill style

○ header fill color←color argument

The fill color to use for header rows and columns

○ header alt fill color←color argument

The alternating fill color to use for header rows and columns
when alternating row fills are specified

See the colors help page for an explanation of how to specify
colors.

Examples

An Invitation to MadHat and Mathematical Typesetting 120

• The code

ҙ⟪align←center⟫％	
⌘table⟪％	
ҙ⟪hlines←yynnyҔalignments←llcr⟫％	
First nameҔLast nameҔStudent IDҔGPAѼѾ	
MickeyҔMouseҔ1Ҕ3.5ѼѾ	
DonaldҔDuckҔ2Ҕ3ѼѾ	
MinnieҔMouseҔ3Ҕ3.8Ѿ	
⟫

typesets as

First name Last name Student ID GPA
Mickey Mouse 1 3.5
Donald Duck 2 3
Minnie Mouse 3 3.8

• A mode complicated table is described by the code

ҙ⟪align←center⟫％	
⌘table⟪％	
ҙ⟪hlines←nynnnnyҔvlines←nynyҔ
alignments←rccclҔframe⟫％	
⌘bold⟪Child⟫；⌘bold⟪Birthday month⟫；
⌘bold⟪Favorite fruit⟫；⌘color⟪0.4Ҕ0Ҕ0⟫
⌘bold⟪Nut allergy⟫＃％	
KimҔAprilҔBananaҔyesѼѾ	
BobbyҔSeptemberҔOrangeҔyesѼѾ	
MichaelҔJanuaryҔAppleҔnoѼѾ	
SamanthaҔJanuaryҔ⌘bold⟪Kiwi⟫；yesѼѾ	
RayҔMarchҔBananaҔ⌘highlight⟪not sure⟫＃％	
DinaҔDecemberҔBananaҔnoѼѾ	
AndyҔFebruaryҔGrapefruitҔnoѼѾ	
LilyҔMarchҔMelonҔnoѼѾ	
WilliamҔJulyҔBananaҔyesѾ	
⟫

An Invitation to MadHat and Mathematical Typesetting 121

This typesets as

Child Birthday month Favorite fruit Nut allergy
Kim April Banana yes

Bobby September Orange yes
Michael January Apple no

Samantha January Kiwi yes

Ray March Banana not sure
Dina December Banana no
Andy February Grapefruit no

Lily March Melon no
William July Banana yes

• Here is code for the same table, with some colors added:

ҙ⟪align←center⟫％	
⌘table⟪％	
ҙ⟪hlines←nynnnnyҔvlines←nynyҔ
alignments←rccclҔframeҔalternating fillҔalt
fill color←⟪.5Ҕ0.1Ҕ0.3Ҕ0.15⟫；fill
color←⟪0.85Ҕ0.8Ҕ0.9Ҕ0.3⟫；％	
header alt fill color←⟪0.85Ҕ0.85Ҕ0.85Ҕ1⟫；％	
header fill color←⟪0.92Ҕ0.92Ҕ0.92Ҕ1⟫；％	
header columns←ynnyҔheader rows←ynnnnnnҔ
header color←⟪0.8Ҕ0.8Ҕ0.8⟫⟫％	
⌘bold⟪Child⟫；⌘bold⟪Birthday month⟫；
⌘bold⟪Favorite fruit⟫；⌘color⟪0.4Ҕ0Ҕ0⟫
⌘bold⟪Nut allergy⟫＃％	
KimҔAprilҔBananaҔyesѼѾ	
BobbyҔSeptemberҔOrangeҔyesѼѾ	
MichaelҔJanuaryҔAppleҔnoѼѾ	
SamanthaҔJanuaryҔ⌘bold⟪Kiwi⟫；yesѼѾ	
RayҔMarchҔBananaҔ⌘highlight⟪not sure⟫＃％	
DinaҔDecemberҔBananaҔnoѼѾ	
AndyҔFebruaryҔGrapefruitҔnoѼѾ	
LilyҔMarchҔMelonҔnoѼѾ	
WilliamҔJulyҔBananaҔyesѾ	
⟫ 	

An Invitation to MadHat and Mathematical Typesetting 122

This typesets as:

Child Birthday month Favorite fruit Nut allergy
Kim April Banana yes

Bobby September Orange yes
Michael January Apple no

Samantha January Kiwi yes

Ray March Banana not sure
Dina December Banana no
Andy February Grapefruit no

Lily March Melon no
William July Banana yes

An Invitation to MadHat and Mathematical Typesetting 123

Boxes

The content of one or more paragraphs can be framed inside a box,
optionally filled with a background of a specified color.

Boxes can also have divider lines separating different paragraphs. The
background color can be changed partway through the box paragraphs.

• ⌘begin box҇

Start a new box. This command should appear on its own
paragraph with no additional content.

• ⌘end box҇

Close the current box. This command should appear on its own
paragraph with no additional content.

• ⌘box divider҇

Insert a box divider line. This command should appear on its own
paragraph with no additional content.

• ⌘box frame thickness⟪thickness⟫

Set the frame thickness for boxes

• ⌘box frame color⟪color argument⟫
⌘box frame colour⟪color argument⟫

Set the frame color for boxes (see the colors help page)

• ⌘box background color⟪color argument⟫
⌘box background colour⟪color argument⟫

Set the background color boxes (see the colors help page)

An Invitation to MadHat and Mathematical Typesetting 124

Examples

The code

⌘box frame color⟪black⟫％	
⌘begin box҇

A simple box

There was a table set out under a tree in front of
the house, and the March Hare and the Hatter were
having tea at it: a Dormouse was sitting between
them, fast asleep, and the other two were using it
as a cushion, resting their elbows on it, and
talking over its head. “Very uncomfortable for the
Dormouse,” thought Alice; “only, as it’s asleep, I
suppose it doesn’t mind.”

The table was a large one, but the three were all
crowded together at one corner of it: “No room! No
room!” they cried out when they saw Alice coming.
“There’s plenty of room!” said Alice indignantly,
and she sat down in a large arm-chair at one end
of the table.

⌘end box҇

produces

A simple box

An Invitation to MadHat and Mathematical Typesetting 125

There was a table set out under a tree in front of the house, and
the March Hare and the Hatter were having tea at it: a Dormouse
was sitting between them, fast asleep, and the other two were using
it as a cushion, resting their elbows on it, and talking over its head.
“Very uncomfortable for the Dormouse,” thought Alice; “only, as
it’s asleep, I suppose it doesn’t mind.”

The table was a large one, but the three were all crowded together
at one corner of it: “No room! No room!” they cried out when they
saw Alice coming. “There’s plenty of room!” said Alice indignantly,
and she sat down in a large arm-chair at one end of the table.

The code

⌘box frame color⟪black⟫⌘box background
color⟪0.89Ҕ0.95Ҕ0.8⟫

⌘begin box҇

A box with several sections

Alice was beginning to get very tired of sitting
by her sister on the bank, and of having nothing
to do: once or twice she had peeped into the book
her sister was reading, but it had no pictures or
conversations in it, “and what is the use of a
book,” thought Alice “without pictures or
conversations?”

⌘box divider҇

So she was considering in her own mind (as well as
she could, for the hot day made her feel very
sleepy and stupid), whether the pleasure of making
a daisy-chain would be worth the trouble of
getting up and picking the daisies, when suddenly
a White Rabbit with pink eyes ran close by her.

An Invitation to MadHat and Mathematical Typesetting 126

⌘box divider҇

⌘box background color⟪light gray⟫％	
There was nothing so very remarkable in that; nor
did Alice think it so very much out of the way to
hear the Rabbit say to itself, “Oh dear! Oh dear!
I shall be late!” (when she thought it over
afterwards, it occurred to her that she ought to
have wondered at this, but at the time it all
seemed quite natural); but when the Rabbit
actually took a watch out of its waistcoat-pocket,
and looked at it, and then hurried on, Alice
started to her feet, for it flashed across her
mind that she had never before seen a rabbit with
either a waistcoat-pocket, or a watch to take out
of it, and burning with curiosity, she ran across
the field after it, and fortunately was just in
time to see it pop down a large rabbit-hole under
the hedge.

⌘end box҇

typesets as

A box with several sections

Alice was beginning to get very tired of sitting by her sister on the
bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, “and what is the use of a book,” thought Alice
“without pictures or conversations?”

An Invitation to MadHat and Mathematical Typesetting 127

So she was considering in her own mind (as well as she could, for
the hot day made her feel very sleepy and stupid), whether the
pleasure of making a daisy-chain would be worth the trouble of
getting up and picking the daisies, when suddenly a White Rabbit
with pink eyes ran close by her.

There was nothing so very remarkable in that; nor did Alice think
it so very much out of the way to hear the Rabbit say to itself,
“Oh dear! Oh dear! I shall be late!” (when she thought it over
afterwards, it occurred to her that she ought to have wondered at
this, but at the time it all seemed quite natural); but when the
Rabbit actually took a watch out of its waistcoat-pocket, and
looked at it, and then hurried on, Alice started to her feet, for it
flashed across her mind that she had never before seen a rabbit
with either a waistcoat-pocket, or a watch to take out of it, and
burning with curiosity, she ran across the field after it, and
fortunately was just in time to see it pop down a large rabbit-hole
under the hedge.

The code

⌘begin box҇

⌘box background color⟪0.95Ҕ0.9Ҕ0.9⟫％	
⌘paraheader⟪Theorem (Euclid).⟫ There are
infinitely many prime numbers.

⌘box background color⟪white⟫％	
⌘paraheader⟪Proof.⟫ Let M̂⟪n>=1⟫, and let M̂⟪p_1,
p_2, ..., p_k⟫ be the prime numbers in M̂⟪[1,n]⟫.
Let M̂⟪N= n!+1⟫, and note that M̂⟪N⟫ is relatively
prime to M̂⟪2,...,n⟫. Thus if M̂⟪p⟫ is a prime factor
of M̂⟪N⟫ then, since M̂⟪N⟫ is relatively prime to
M̂⟪2⟫, M̂⟪p⟫ cannot be M̂⟪2⟫; since M̂⟪p⟫ is relatively
prime to M̂⟪3⟫, M̂⟪p⟫ cannot be M̂⟪3⟫, etc. In general,
M̂⟪p⟫ cannot be any of the numbers M̂⟪p_1,...,p_k⟫.
Therefore we have M̂⟪p>n⟫. We have shown that for
any M̂⟪n>=1⟫ there is a prime M̂⟪p⟫ bigger than M̂⟪n⟫.
Thus, there are infinitely many prime numbers.

An Invitation to MadHat and Mathematical Typesetting 128

⌘end box҇

typesets as

Theorem (Euclid). There are infinitely many prime numbers.

Proof. Let > ≥ 1, and let #1 , #2 , … , #E be the prime numbers in [1 , >]. Let O = > ! + 1, and note that O is relatively prime to 2, … ,>. Thus if # is a prime factor of O then, since O is relatively prime
to 2, # cannot be 2; since # is relatively prime to 3, # cannot be 3,
etc. In general, # cannot be any of the numbers #1 , … , #E.
Therefore we have # > >. We have shown that for any > ≥ 1 there
is a prime # bigger than >. Thus, there are infinitely many prime
numbers.

See also

• Colors

An Invitation to MadHat and Mathematical Typesetting 129

Links

With link commands, you can include hyperlinks to an external URL (for
example a web page), and intralinks, which link to other pages in the
notebook.

• ⌘hyperlink⟪URL⟫

A hyperlink with the link URL string serving also as the link text

• ⌘hyperlink⟪URLҔlink text⟫

A hyperlink with a standard link text that links to a URL

• ⌘intralink⟪page name⟫

An intralink to another notebook page, with the page name serving
as the link text

• ⌘intralink⟪page nameҔlink text⟫

An intralink to another notebook page, with arbitrary link text

Including the attribute slide←slide number in an
⌘intralink⟪...⟫ command will direct the link to the specified
slide number on the destination page.

Customizing link styles

The help page on notebook configuration explains how to customize
the appearance of links.

Examples

An Invitation to MadHat and Mathematical Typesetting 130

• The code

Some common household pets are
⌘hyperlink⟪https://en.wikipedia.org/wiki/CatҔ
cats⟫, ⌘hyperlink⟪https://en.wikipedia.org/
wiki/DogҔdogs⟫, and ⌘hyperlink⟪https://
en.wikipedia.org/wiki/Green_iguanaҔgreen
iguanas⟫.	

typesets as:

Some common household pets are cats, dogs, and green iguanas.

• The code

You can read about green iguanas at
⌘hyperlink⟪https://en.wikipedia.org/wiki/
Green_iguana⟫

You can read about green iguanas at
https://en.wikipedia.org/wiki/Green_iguana

typesets as

• Entering the code

Go to the ⌘intralink⟪MadHat Help⟫ page, or
⌘intralink⟪MatricesҔclick here for a
different page⟫ about matrices.

will typeset as

Go to the MadHat Help page, or click here for a different
page about matrices.

An Invitation to MadHat and Mathematical Typesetting 131

https://en.wikipedia.org/wiki/Cat
https://en.wikipedia.org/wiki/Dog
https://en.wikipedia.org/wiki/Green_iguana
https://en.wikipedia.org/wiki/Green_iguana
https://en.wikipedia.org/wiki/Green_iguana
https://en.wikipedia.org/wiki/Green_iguana

Slides

supports a way to format a notebook (or parts of a notebook) as
a slide presentation, with pages that reveal their content gradually and
contain dynamic effects such as animations, content appearing and
disappearing at different stages, etc.

The basic unit of a slide presentation is a slide, which is the look of a
notebook page at a particular stage of the presentation. A page can have
many slides. A typical slide presentation is a succession of pages, each
partitioned into slides. It is easy to navigate from one slide to the next
(or the preceding one), or to different slides or pages, using the Navigate
submenu of the app main menu; navigation actions are also accessible via
keyboard shortcuts.

There are two main mechanisms to specify the behavior of your slides,
each described on a separate help page:

• Slide transitions

• Slide fragments

The documentation page of the website has code samples you
can download with many examples of slides and how they can be used to
present content with interesting, dynamic effects.

An Invitation to MadHat and Mathematical Typesetting 132

https://madhat.design/documentation/
https://madhat.design/documentation/
https://madhat.design/documentation/

Slide transitions

Adding slide transitions to a page is as simple as including one of the
slide transition commands below at the appropriate places in your
content, with optional attributes to customize the transition.

• ⌘pause҇

Marks a slide transition point in a page. User action is needed to
proceed to the next slide.

The page will automatically calculate how many slides it has based on
the number of slide transitions you included (unless you also included
slide fragments, which could affect the calculation). For example, if
there are 4 ⌘pause commands, the page will have 5 slides (or more,
with slide fragments).

Attributes to modify the behavior of a slide
transition

• animate in←animation type

A specification of the type of animation for the new content being
revealed. Allowed values are: slide from left,
slide from right, slide from top, slide from bottom,
fade in, and none. The default is slide from right.

• duration←duration

A specification of the animation duration, in seconds. The default
value is 0.6

• profile←animation profile

An Invitation to MadHat and Mathematical Typesetting 133

Specify the profile for the animation. Allowed values are ease,
linear, bounce, and elastic. The default is ease.

An Invitation to MadHat and Mathematical Typesetting 134

Slide fragments

Slide transition commands offer a good level of control in partitioning
your page content into slides, but still have a limited flexibility in that
they only allow content to be revea led in a linear fashion.

An alternative mechanism that can be used in addition to, or in place of,
slide transition commands, is that of slide fragments.

A slide fragment is a piece of content that you would like to be visible
only at a specified range of slides on the page. For example, if the page
has 10 slides, you may want some content to appear at slide number 3,
and disappear at slide number 7. This is done by wrapping the content in
a ⌘slide fragment⟪...⟫ command.

Animations can be specified with an optional attributes block to control
how the content appears, how it disappears, and how it moves and, in the
case of graphics objects, changes shape, during the range of slides when it
is visible.

The syntax is described below.

• ⌘slide fragment⟪from index�to index�fragment contents⟫

A fragment that will be visible only within a specified range of
slides in the page, and which can be optionally animated in
prescribed ways.

Attributes to modify the behavior of a slide
fragment

• animate in←animation type

An Invitation to MadHat and Mathematical Typesetting 135

A specification of the type of animation when the slide fragment
appears. Allowed values are: “slide from left”, “slide from right”,
“slide from top”, “slide from bottom”, “fade in”, and “none”. The
default is “fade in”.

• animate out←animation type

A specification of the type of animation when the slide fragment
disappears. Allowed values are: “slide to left”, “slide to right”, “slide
to top”, “slide to bottom”, “fade out”, and “none”. The default is
“fade out”.

• duration in←duration, duration out←duration

A specification of the duration of the respective animations, in
seconds. The default value is 0.6.

• profile in←profile, profile out←profile

Specify the profile for the respective animation. Allowed values are
ease, linear, bounce, and elastic. The default is ease.

• move on transition

move on transition←⟪％	
transition index 1Ѽx movement 1Ҕy movement 1ѼѾ	
transition index 2Ѽx movement 2Ҕy movement 2Ѿ	
...	
transition index kѼx movement kҔy movement kѾ	
⟫

Animates the fragment by moving it on the specified list of
transition indices, each time by the specified movement vector.

Note. The scale of the coordinates of the movement vector is
normally interpreted in ordinary (“document”) coordinates;

An Invitation to MadHat and Mathematical Typesetting 136

however, if the slide fragment is inside a graphics canvas, then
the coordinates are interpreted in the scale of the '- and (
-coordinates of the graphics canvas. (A similar conditional
interpretation of coordinates is made in the ⌘annotate⟪...⟫
command — see the page on graphics drawing.)

• change on transition

change on transition←⟪％	
transition index 1Ҕproperty name 1Ѽlist of valuesѼѾ	
transition index 2Ҕproperty name 2Ѽlist of valuesѼѾ	
...	
transition index kҔproperty name kѼlist of valuesѼѾ	
⟫

Animates the fragment by changing its specified properties on the
specified list of transition indices, each time to the specified value.

An Invitation to MadHat and Mathematical Typesetting 137

Subscripts and superscripts

In math mode, mathematical expressions can be annotated with
subscripts and superscripts, either using the appropriate commands, or by
using the underscore and caret shorthand symbols. The syntax for both
of these options is described below.

• Command notation for subscripts and superscripts

M̂: ⌘subscript⟪main expressionҔsubscript expression⟫

Annotate the main expression with another expression as a
subscript

M̂: ⌘superscript⟪main expressionҔsuperscript
expression⟫

Annotate the main expression with another expression as a
superscript

M̂: ⌘subsuperscript⟪main expressionҔsubscript
expressionҔsuperscript expression⟫

Annotate the main expression with a subscript and a superscript

• Underscore and caret shorthand notation

Subscripts and superscripts can be entered using the underscore _
and caret ^ shorthand notation used in many computer algebra and
typesetting packages.

○ main expression_subscript expression is equivalent to

An Invitation to MadHat and Mathematical Typesetting 138

⌘subscript⟪main expressionҔsubscript expression⟫

○ main expression^superscript expression is equivalent to

⌘superscript⟪main expressionҔsuperscript expression⟫

○
main expression_subscript expression^superscript expression
and
main expression^superscript expression_subscript expression
are both equivalent to each other, and to

M̂: ⌘subsuperscript⟪main expressionҔsubscript
expressionҔsuperscript expression⟫

Example

Entering the code

The equation for the Bernoulli lemniscate in the
M̂⟪(X_1,X_2)⟫ coordinate system is M̂⟪(X_1^2 +
X_2^2)^2 = 2c^2 (X_1^2-X_2^2)⟫.

produces

The equation for the Bernoulli lemniscate in the (P1 , P2) coordinate
system is (P12 + P22)2 = 2.2(P12 − P22).
Pre-subscripts and pre-superscripts

Pre-subscripts and pre-superscripts are annotations on a symbol that
are attached to the symbol on its left side. (Together, they are sometimes
referred to as prescripts.) MadHat supports adding any combination of

An Invitation to MadHat and Mathematical Typesetting 139

a pre-subscript, pre-superscript, subscript and superscript annotation on
an expression. This is done using the ⌘multiscript⟪...⟫ command.

• ⌘multiscript⟪...⟫

M̂: ⌘multiscript⟪main expressionҔsubscriptҔ
superscriptҔpresubscriptҔpresuperscript

Examples

• Entering the code

Uranium-232 is an isotope of uranium with a
half-life of 68.9 years. Its chemical symbol
is M̂⟪⌘multiscript⟪⌘roman math⟪U⟫；；；；232⟫⟫.	

typesets as

Uranium-232 is an isotope of uranium with a half-life of 68.9 years.
Its chemical symbol is U232 .

• The code

The binomial coefficient M̂⟪⌘binom⟪nҔk⟫⟫ is
sometimes denoted M̂⟪⌘multiscript⟪CҔkҔҔnҔ⟫⟫.	

typesets as

The binomial coefficient (>E) is sometimes denoted SE> .

• The code

The Gauss hypergeometric function
M̂⟪⌘multiscript⟪FҔ1ҔҔ2Ҕ⟫(a,b;c;z)⟫ can be
evaluated using Euler's integral formula	

An Invitation to MadHat and Mathematical Typesetting 140

M̂: ⌘multiscript⟪FҔ1ҔҔ2Ҕ⟫(a,b;c;z) =
⌘frac⟪Gamma(c)ҔGamma(b)Gamma(c-b)⟫ int_0^1
x^⟪b-1⟫ (1-x)^⟪c-b-1⟫ (1-z x)^⟪-a⟫ dx

will appear as

The Gauss hypergeometric function T12 (! , U ; . ; 3) can be evaluated
using Euler’s integral formulaT12 (! , U ; . ; 3) = Γ(.)Γ(U)Γ(.− U) ∫01 'U− 1(1 − ').− U− 1(1 − 3')− ! X'

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 141

Mathematical font variants

• ⌘bold math⟪...text...⟫
⌘bmath⟪...text...⟫

Styles math content in the bold math font variant

• ⌘italic math⟪...text...⟫
⌘itmath⟪...text...⟫

Styles math content in the italic math font variant

• ⌘blackboard math⟪...text...⟫
⌘bbmath⟪...text...⟫

Styles math content in the blackboard math font variant

• ⌘calligraphy math⟪...text...⟫
⌘calmath⟪...text...⟫

Styles math content in the calligraphy math font variant

• ⌘fraktur math⟪...text...⟫
⌘frakmath⟪...text...⟫

Styles math content in the fraktur math font variant

• ⌘roman math⟪...text...⟫

Styles math content in the roman math font variant

• ⌘mono math⟪...text...⟫

Styles math content in the monospace math font variant

• ⌘sans math⟪...text...⟫

An Invitation to MadHat and Mathematical Typesetting 142

Styles math content in the sans serif font variant

Examples YZ = [K&>.,I\>(') =](')function(x) = Q (x)ℚ is the field of rationals_> denotes the symmetric group of order >(Ω, ℱ , b) is a common notation for a probability spacecdedfghijk lhmn odemp[qrstuvwxyz{|}~�������Z��Y������������������������ !U.X¡KMℎIJE"%>\#£¤¥,&¦§'(3¨©Sª«T¬­®¯°±²O³b]´µ¶·¸¹Pº»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ℂÙÚÛÜℍÞßàáâℕäℙℚℝçèéêëìíℤïℬñòℰℱôℋℐ÷øℒℳûüýþℛ!"#$%&'()*+,-./0123456789:;<=>?@ABCDℭFGHIℌℑLMNOPQRSℜ_UVWXYZℨabcdefghijklmnopqrstuvwxyzABCDEFGHIJK LMNOPQRSTUVWXYZh\ikjo]n^_`aledgbcfmdefghijklmnopqrstucvwxyz{|}~��������������������������������� ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶

An Invitation to MadHat and Mathematical Typesetting 143

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 144

Fractions

• ⌘fraction⟪numeratorҔdenominator⟫
⌘frac⟪numeratorҔdenominator⟫

A fraction

• A shorthand notation for entering fractions:
numerator//denominator

Example

tan x = ⌘frac⟪sin xҔcos x⟫tan' = sin'cos'
Related commands

• ⌘quasifraction⟪numeratorҔdenominator⟫

Typeset exactly like a fraction, but the horizontal fraction line is
not drawn.

• ⌘binomial⟪nҔk⟫
⌘binom⟪nҔk⟫

A binomial coefficient (>E)
• ⌘continued fraction⟪n_1Ҕn_2Ҕ...Ҕn_k⟫

⌘contfrac⟪n_1Ҕn_2Ҕ...Ҕn_k⟫

An Invitation to MadHat and Mathematical Typesetting 145

A continued fraction 1>1+ 1>2+ 1…+ 1>E
See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 146

Square roots

• ⌘square root⟪expression⟫
⌘sqrt⟪expression⟫

A square root.

Example

⌘sqrt⟪2+⌘sqrt⟪2+⌘sqrt⟪2+⌘sqrt⟪2+⌘sqrt⟪2+⌘sqrt⟪2⟫⟫⟫⟫⟫⟫

⎷√√√√2+ ⎷√√√2+ √2+ √2+ √2+ √2
See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 147

Operators

Large operators that adjust their size according
to the display mode:

• sum

Summation symbol ∑
• product, prod

Product symbol Π
• integral, int

Integral sign ∫
• contourintegral, contourint

Contour integral sign ∮
• doubleintegral, doubleint

Double integral sign ∬
• tripleintegral, tripleint

Triple integral sign ∭
Operators of a fixed size:

• nabla, grad

The gradient (nabla) operator ∇

An Invitation to MadHat and Mathematical Typesetting 148

• smallsum, bigsum

Small and big summation symbols ∑, ∑
• smallproduct, smallprod; bigproduct, bigprod

Small and big product symbols Π, ∏
• smallintegral, smallint; bigintegral, bigint

Small and big integral signs ∫, ∫
• smallcontourintegral, smallcontourint;

bigcontourintegral, bigcontourint

Small and big contour integral signs ∮, ∮
See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 149

Greek letters

• alpha, beta, gamma, delta, ..., omega.

Lower case Greek letters

• Alpha, Beta, Gamma, Delta, ..., Omega.

Upper case Greek letters

You can also type Greek letters by inserting them in the text editor as
standard Unicode Greek characters.

Examples α2 + β2 = γ2Γ(ξ)Γ(1 − ξ) = πsin(πξ)
See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 150

Differentials

• da, db, dc, ..., dz

Differentials of lower case roman letters

• dA, dB, dC, ..., dZ

Differentials of upper case roman letters

• dalpha, dbeta, dgamma, ..., domega.

Differentials of lower case Greek letters

• dAlpha, dBeta, dGamma, ..., dOmega.

Differentials of upper case Greek letters

• partial

Partial derivative sign

Examples ∫− ∞∞ ¡− '2 X' = √π
Iℏ Ç ΨÇ, = − ! ℏ22% Ç2ΨÇ'2 + ¸(' , ,)Ψ

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 151

Brackets

Brackets are the parentheses and other forms of bracketing delimiters
used to surround expressions in a mathematical formula. MadHat
supports smart brackets that automatically adjust their size to fit the
height of the content they surround, or whose size can be specified
manually.

The simplest way to enter brackets is by using the appropriate bracket
symbol in your formula. For example, (⌘frac⟪x+yҔ2⟫)^2 >= x y
will typeset as (' + (2)2 ≥ '(
The bracket symbols that are available for use in this way are parentheses
((and) symbols); square brackets ([and] symbols); curly braces ({
and } symbols); the vertical bar symbol |; and two successive vertical bar
symbols ||, which are typeset as the double vertical bar mathematical
symbol ‖.
For other bracket types, or for a more precise specification of the bracket
behavior, use the bracket commands listed below.

Bracket commands

• ⌘left bracket⟪bracket specification⟫
⌘left⟪bracket specification⟫

A left (opening) bracket

• ⌘right bracket⟪bracket specification⟫
⌘right⟪bracket specification⟫

A right (closing) bracket

An Invitation to MadHat and Mathematical Typesetting 152

• ⌘middle bracket⟪bracket specification⟫
⌘middle⟪bracket specification⟫

A middle bracket

• ⌘close bracket҇

A closing bracket of matching type and size to the opening bracket
it is associated with

Format for bracket specification

A bracket specification consists of a bracket symbol or keyword, followed
by an optional size parameter. The available symbols and keywords are:

• (and) (parentheses)

• [and] (square brackets)

• { and } (curly braces)

• < and > (angle brackets)

• | (vertical bar)

• || (double vertical bar)

• floor (floor notation)

• ceiling or ceil (ceiling notation)

• same (a closing bracket type that will match the opening bracket it
is associated with)

The optional size parameter is a number between 1 and 8, where 1 is the
smallest available bracket size, and 8 is the largest available (fixed)
bracket size. For example, ⌘left⟪(3⟫ and ⌘left⟪(7⟫ typeset as “(”

An Invitation to MadHat and Mathematical Typesetting 153

and “(”, respectively.

Additional notes

• If the size is not specified for a matching pair of opening and closing
brackets, the brackets will size themselves automatically to fit the
vertical dimensions of the bracketed expression. Matching opening
and closing brackets need to be in the same top-level code block in
order for MadHat to match them with each other and determine
their size correctly.

• If the size is left unspecified for just the closing bracket, it will size
itself to match the opening bracket it is associated with.

• The ⌘middle bracket⟪...⟫ command only works with the
vertical bar (|) or double vertical bar (||) bracket types.

• Closing brackets can be omitted. In that case, if the size of the
opening bracket is unspecified, it will size itself to match the height
of the entire expression that follows it within the same code block.

• A closing bracket without a matching opening bracket will be sized
at the specified size, or at the smallest available size if the size is
not specified.

• Closing and opening brackets do not need to be of the same type in
order to be associated with each other. For example, (1' , 1(] will
typeset as (1' , 1(].

• Closing and opening brackets do not need to be on the same line of
a multiline math display in order to be associated with each other.

Examples

An Invitation to MadHat and Mathematical Typesetting 154

This code illustrates the different bracket types and sizes:

M̂: 	
⌘left⟪(1⟫ x ⌘right⟪)⟫	
⌘left⟪(2⟫ x ⌘right⟪)⟫	
⌘left⟪(3⟫ x ⌘right⟪)⟫	
⌘left⟪(4⟫ x ⌘right⟪)⟫	
⌘left⟪(5⟫ x ⌘right⟪)⟫	
⌘left⟪(6⟫ x ⌘right⟪)⟫	
⌘left⟪(7⟫ x ⌘right⟪)⟫	
⌘left⟪(8⟫ x ⌘right⟪)⟫	
Ѿ	
⌘newline҇ 	
Ѿ This illustrates the use of the "same" bracket
type to match the left bracket	
⌘left⟪[1⟫ x ⌘right⟪]⟫	
⌘left⟪[2⟫ x ⌘right⟪]⟫	
⌘left⟪[3⟫ x ⌘right⟪same⟫	
⌘left⟪[4⟫ x ⌘right⟪same⟫	
⌘left⟪[5⟫ x ⌘right⟪same⟫	
⌘left⟪[6⟫ x ⌘right⟪same⟫	
⌘left⟪[7⟫ x ⌘right⟪same⟫	
⌘left⟪[8⟫ x ⌘right⟪same⟫	
Ѿ	
⌘newline҇	
Ѿ 	
⌘left⟪{1⟫ x ⌘right⟪}⟫	
⌘left⟪{2⟫ x ⌘right⟪}⟫	
⌘left⟪{3⟫ x ⌘right⟪}⟫	
⌘left⟪{4⟫ x ⌘right⟪}⟫	
⌘left⟪{5⟫ x ⌘right⟪}⟫	
⌘left⟪{6⟫ x ⌘right⟪}⟫	
⌘left⟪{7⟫ x ⌘right⟪}⟫	
⌘left⟪{8⟫ x ⌘right⟪}⟫	
⌘newline҇	
⌘left⟪<1⟫ x ⌘right⟪>⟫	
⌘left⟪<2⟫ x ⌘right⟪>⟫	
⌘left⟪<3⟫ x ⌘right⟪>⟫	
⌘left⟪<4⟫ x ⌘right⟪>⟫	
⌘left⟪<5⟫ x ⌘right⟪>⟫	
⌘left⟪<6⟫ x ⌘right⟪>⟫	
⌘left⟪<7⟫ x ⌘right⟪>⟫	
⌘left⟪<8⟫ x ⌘right⟪>⟫	
⌘newline҇	
⌘left⟪floor1⟫ x ⌘right⟪floor⟫	
⌘left⟪floor2⟫ x ⌘right⟪floor⟫	
⌘left⟪floor3⟫ x ⌘right⟪floor⟫	
⌘left⟪floor4⟫ x ⌘right⟪floor⟫	
⌘left⟪floor5⟫ x ⌘right⟪floor⟫	
⌘left⟪floor6⟫ x ⌘right⟪floor⟫	
⌘left⟪floor7⟫ x ⌘right⟪floor⟫	
⌘left⟪floor8⟫ x ⌘right⟪floor⟫	
⌘newline҇	
⌘left⟪ceiling1⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling2⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling3⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling4⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling5⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling6⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling7⟫ x ⌘right⟪ceiling⟫	
⌘left⟪ceiling8⟫ x ⌘right⟪ceiling⟫	

An Invitation to MadHat and Mathematical Typesetting 155

This typesets as: (') (') (') (') (') (') (') (')
['] ['] ['] ['] ['] ['] ['] [']
{'} {'} {'} {'} {'} {'} {'} {'}
⟨'⟩ ⟨'⟩ ⟨'⟩ ⟨'⟩ ⟨'⟩ ⟨'⟩ ⟨'⟩ ⟨'⟩
⌊'⌋ ⌊'⌋ ⌊'⌋ ⌊'⌋ ⌊'⌋ ⌊'⌋ ⌊'⌋ ⌊'⌋
⌈'⌉ ⌈'⌉ ⌈'⌉ ⌈'⌉ ⌈'⌉ ⌈'⌉ ⌈'⌉ ⌈'⌉

The code

M̂: SU(3)={ A=⌘matrix⟪a_⟪1 1⟫；a_⟪1 2⟫；a_⟪1 3⟫＃a_⟪2
1⟫；a_⟪2 2⟫；a_⟪2 3⟫＃a_⟪3 1⟫；a_⟪3 2⟫；a_⟪3 3⟫⟫
⌘space⟪10⟫⌘middle⟪|⟫⌘space⟪10⟫ a_⟪j k⟫ in
complexnumbers, ⌘space⟪10⟫	
A A^⟪***⟫ = I, ⌘space⟪10⟫ det A = 1}	
⌘newline҇	
||f|| = (int_0^⟪infty⟫ |f(x)|^2dx ⌘right⟪same⟫
^⟪1/2⟫

typesets as

An Invitation to MadHat and Mathematical Typesetting 156

SU(3) = ⎩
⎧⎨⎪⎪⎪⎪¨ = ⎝

⎛⎜⎜⎜⎜ !11 !12 !13!21 !22 !23!31 !32 !33 ⎠
⎞⎟⎟⎟⎟ ⏐⏐⏐⏐⏐

⏐⏐⏐ !JE ∊ ℂ, ¨¨∗ = ® , det¨ = 1⎭
⎫⎬⎪⎪⎪⎪

‖K‖ = (∫0∞|K(')|2 X')1/2

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 157

Horizontal brackets

• ⌘overbrace⟪expressionҔannotation⟫

A top-side annotation with a horizontal curly brace

• ⌘underbrace⟪expressionҔannotation⟫

A bottom-side annotation with a horizontal curly brace

• ⌘overbracket⟪expressionҔannotation⟫

A top-side annotation with a horizontal square bracket

• ⌘underbracket⟪expressionҔannotation⟫

A bottom-side annotation with a square bracket

• ⌘overparenthesis⟪expressionҔannotation⟫
⌘overparen⟪expressionҔannotation⟫

A top-side annotation with a horizontal parenthesis

• ⌘underparenthesis⟪expressionҔannotation⟫
⌘underparen⟪expressionҔannotation⟫

A bottom-side annotation with a horizontal parenthesis

• ⌘overtortoise⟪expressionҔannotation⟫

A top-side annotation with a horizontal tortoise shell bracket

• ⌘undertortoise⟪expressionҔannotation⟫

A bottom-side annotation with a horizontal tortoise shell bracket

An Invitation to MadHat and Mathematical Typesetting 158

Examples

• k ** x =⌘overbrace⟪x+...+xҔk T̂⟪ times⟫⟫

E ⋅ ' = E times' + …+ '⏞ ⏞⏞⏞ ⏞
• k ** x =⌘underbrace⟪x+...+xҔk T̂⟪ times⟫⟫E ⋅ ' = ' + …+ 'E times

⏟ ⏟⏟⏟ ⏟
• k ** x =⌘overbracket⟪x+...+xҔk T̂⟪ times⟫⟫

E ⋅ ' = E times' + …+ '⎴ ⎴⎴⎴
• k ** x =⌘underbracket⟪x+...+xҔk T̂⟪ times⟫⟫E ⋅ ' = ' + …+ 'E times

⎵ ⎵⎵⎵
• k ** x =⌘overparen⟪x+...+xҔk T̂⟪ times⟫⟫

E ⋅ ' = E times' + …+ '⏜ ⏜⏜
• k ** x =⌘underparen⟪x+...+xҔk T̂⟪ times⟫⟫E ⋅ ' = ' + …+ 'E times

⏝ ⏝⏝
• k ** x =⌘overtortoise⟪x+...+xҔk T̂⟪ times⟫⟫

E ⋅ ' = E times' + …+ '⏠ ⏠⏠
• k ** x =⌘undertortoise⟪x+...+xҔk T̂⟪ times⟫⟫

An Invitation to MadHat and Mathematical Typesetting 159

E ⋅ ' = ' + …+ 'E times
⏡ ⏡⏡

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 160

Extensible arrows and relations

•
⌘annotated right arrow⟪top annotationҔbottom annotation⟫

An extensible right arrow with optional annotations above and
below it

•
⌘annotated double right arrow⟪top annotationҔbottom annotation⟫

An extensible double right arrow with optional annotations above
and below it

•
⌘annotated left arrow⟪top annotationҔbottom annotation⟫

An extensible left arrow with optional annotations above and below
it

•
⌘annotated double left arrow⟪top annotationҔbottom annotation⟫

An extensible double left arrow with optional annotations above
and below it

•
⌘annotated left right arrow⟪top annotationҔbottom annotation⟫

An extensible bidirectional (left-right) arrow with optional
annotations above and below it

•
⌘annotated double left right arrow⟪top annotationҔbottom annotation⟫

An Invitation to MadHat and Mathematical Typesetting 161

An extensible double bidirectional (left-right) arrow with optional
annotations above and below it

• ⌘annotated equal⟪top annotationҔbottom annotation⟫

An extensible equal sign with optional annotations above and below
it

Examples ∑E = 1
> (− 1)EE >→∞→ →→→→→→ log 2

ℙ(P1 + …+ P>√>µ ≤ ,) >→∞→ →→→→→→ 1√2π ∫− ∞, ¡− '2 X'P1 + …+ P>√>µ ª>→∞→ →→→→→→ O(0 , 1)P1 + …+ P>√>µ >→∞⇒ ⇒⇒⇒⇒⇒⇒ O(0 , 1)
O(0 , 1) >→∞⇐ ⇐⇐⇐⇐⇐⇐ P1 + …+ P>√>µP + º√2 dist= ====== P

See also

• Keywords for ordinary arrows are described in the binary
relations page

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 162

Special mathematical symbols

• infinity, infty

Infinity symbol ∞
• naturalnumbers

The set of natural numbers ℕ
• integers

The set of integers ℤ
• rationals

The set of rationals ℚ
• reals

The set of reals ℝ
• complexnumbers

The set of complex numbers ℂ
• hbar

Planck’s constant ℏ
See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 163

Binary relations

• Arrows:

○ leftarrow, from ←
○ rightarrow, to →
○ uparrow ↑
○ downarrow ↓
○ leftrightarrow, fromto ↔
○ doublerightarrow ⇒
○ doubleleftarrow ⇐
○ doubleleftrightarrow, iff ⇔
○ mapsto ⟼

• Ordinary relations:

○ approx ≈
○ cong ≡
○ sim ~
○ /= ≠
○ <= ≤
○ >= ≥

• Set-theoretic relations:

○ elementof, in ∊

An Invitation to MadHat and Mathematical Typesetting 164

○ subset ⊂
○ subseteq ⊆
○ superset ⊃
○ superseteq ⊇

See also

• Extensible arrows and relations

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 165

Binary operators

• Arithmetic operators:

○ +, plus +
○ -, minus −
○ +-, plusminus ±
○ -+, minusplus ∓
○ *, times ×
○ **, dot ⋅
○ ***, convolve ∗
○ /, dividedby /

• Miscellaneous algebra operators:

○ fatdot •
• Set-theoretic operators:

○ intersection ∩
○ bigintersection ⋂
○ union ∪
○ bigunion ⋃

• Logic operators:

○ conjunction, and ∧
○ bigconjunction, bigand ⋀

An Invitation to MadHat and Mathematical Typesetting 166

○ disjunction, or ∨
○ bigdisjunction, bigor ⋁

• Ellipses:

○ centerdots ⋯
○ verticaldots ⋮
○ sedots ⋱
○ nedots ⋰

See also

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 167

Matrices

• ⌘matrix⟪matrix cells⟫

A matrix. The syntax for specifying the matrix cells is the same as
for tables.

Examples

• The code ⌘matrix⟪1Ҕ2Ҕ3Ѽ4Ҕ5Ҕ6⟫ typesets as (1 2 34 5 6)
.

• The code

M̂: p_A(x) =det(x I-A) =⌘matrix⟪	
x-a_⟪11⟫；-a_⟪12⟫；-a_⟪13⟫；centerdotsҔ-a_⟪1n⟫	
Ѽ	
-a_⟪21⟫；x-a_⟪22⟫；-a_⟪23⟫；centerdotsҔ-a_⟪2n⟫	
Ѽ	
-a_⟪31⟫；-a_⟪32⟫；x-a_⟪32⟫；centerdotsҔ-a_⟪3n⟫	
Ѽ	
verticaldotsҔverticaldotsҔverticaldotsҔ
sedotsҔverticaldots	
Ѽ	
-a_⟪n1⟫；-a_⟪n2⟫；-a_⟪n3⟫；centerdotsҔx-a_⟪n n⟫	
⟫

typesets as

An Invitation to MadHat and Mathematical Typesetting 168

#¨(') = det('® − ¨) =
⎝
⎛
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜ ' − !11 − !12 − !13 ⋯ − !1>− !21 ' − !22 − !23 ⋯ − !2>− !31 − !32 ' − !32 ⋯ − !3>⋮ ⋮ ⋮ ⋱ ⋮− !>1 − !>2 − !>3 ⋯ ' − !>> ⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟

See also

• Tables

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 169

Mathematical symbol decorations

Decorations are annotations on a mathematical symbol that denote an
operation done to the object denoted by the symbol, or denote an entirely
new symbol that relates to the original symbol in some way. Examples of
decorations are the hat operator and the overdot notation.

The following decoration commands are available in :

• ⌘overbar⟪expression⟫
⌘bar⟪expression⟫

Overbar decoration

• ⌘underbar⟪expression⟫

Underbar decoration

• ⌘hat⟪expression⟫

Hat decoration

• ⌘tilde⟪expression⟫

Tilde decoration

• ⌘vector⟪expression⟫
⌘vec⟪expression⟫

Vector decoration

• ⌘overdot⟪expression⟫

Dot (time derivative) decoration

• ⌘double dot⟪expression⟫

An Invitation to MadHat and Mathematical Typesetting 170

https://en.wikipedia.org/wiki/Hat_operator
https://en.wikipedia.org/wiki/Hat_operator
https://en.wikipedia.org/wiki/Hat_operator
https://mathworld.wolfram.com/Overdot.html

⌘ddot⟪expression⟫

Double dot (second time derivative) decoration

• ⌘triple dot⟪expression⟫
⌘dddot⟪expression⟫

Triple dot (third time derivative) decoration

Examples

• The code

M̂: ⌘tilde⟪F⟫(u) = int_⟪-infty⟫^⟪infty⟫ F(x)e^⟪-
i u x⟫dx

typesets as T~ (&) = ∫− ∞∞ T(') ¡− I&' X'
• The code

M̂: ⌘ddot⟪x⟫ = ⌘vec⟪M⟫ ⌘tilde⟪tau⟫ -
⌘overdot⟪xi⟫ - ⌘underbar⟪lambda⟫

typesets as '̈ = ²⃗ τ~ − ξ̇ − λ'+ I(= ' − I(('+ I() = ' + I(
See also

An Invitation to MadHat and Mathematical Typesetting 171

• Typing mathematical formulas in Madhat

An Invitation to MadHat and Mathematical Typesetting 172

Images

• ⌘image⟪image file name⟫

• ⌘image⟪image file nameҔscaling factor⟫

Insert an image from the notebook’s media library.

If the scaling factor is provided, the image is scaled proportionally
by that factor (this is an abbreviated syntax for providing a value
for the scale attribute; see the list of attributes below allowing
more detailed control over the sizing and positioning of the image.

Attributes

• scale width←scaling factor

• scale height←scaling factor

• scale←scaling factor

• width←width

• height←height

• raise←points

• lower←points

• mathcenter, no mathcenter – a Boolean attribute that
controls whether the image is vertically aligned to be flush with the
baseline, or centered around the math axis

Examples

An Invitation to MadHat and Mathematical Typesetting 173

• Some text, and a scaled picture inserted: , then
more text after the picture.

• The same picture, stretched horizontally: .

• The same picture, stretched vertically: .

• The same picture, width 100 points: .

• The same picture, width 100 points and raised: .
Then more text.

• The same picture, width 100 points and lowered: .

An Invitation to MadHat and Mathematical Typesetting 174

Then more text.

• Math-centered pictures inside a math equation:

∫01 T() X' =
See also

• Videos

An Invitation to MadHat and Mathematical Typesetting 175

Adding videos to a page

• ⌘video⟪video file name⟫

• ⌘video⟪video file nameҔscaling factor⟫

Insert a video from the notebook’s media library.

If the scaling factor is provided, the video is scaled proportionally
by that factor.

See also

• Images

An Invitation to MadHat and Mathematical Typesetting 176

The media library of a notebook

Every notebook contains a media library into which you can
import image and video files. You access the media library by clicking the
media library icon at the bottom left corner of the editor window, as
shown in the screenshot:

media library icon

The media library window for the notebook will appear, and allow you to
import media files, view your existing files, reorder and rename them, etc.
Here is a screenshot of the window:

An Invitation to MadHat and Mathematical Typesetting 177

Once you have imported your files, you can add them as part of the
content of your notebook pages by using the ⌘image⟪...⟫ and
⌘video⟪...⟫ commands, described in the help pages listed below.

See also

• Images

• Videos

An Invitation to MadHat and Mathematical Typesetting 178

Graphics canvasses

The graphics canvas is the basic high-level object for graphics drawing. A
graphics canvas will render as a rectangle of specified dimensions inside
your document. Inside the canvas (or even outside it, if you disable
cropping) you can draw lines, curves, shapes, and other graphical objects
by including the appropriate commands. The syntax for creating a
graphics canvas is:

⌘graphics canvas⟪list of graphics commands⟫

An optional attributes block can be included; see below for a list of
recognized attributes.

Graphics commands are divided into several types, each described in a
separate help page below:

• Drawing commands

• Styling commands

• Pen drawing commands

• Pen control commands

• Mathematical plotting commands

The documentation page of the website has code samples you
can download with examples of how these commands are used in practice.

Attributes for a graphics canvas

The parameters to customize the graphics canvas are provided as
attributes:

An Invitation to MadHat and Mathematical Typesetting 179

https://madhat.design/documentation/
https://madhat.design/documentation/
https://madhat.design/documentation/

• width←width

Specify the width, in points. The default value is 200.

• height←height

Specify the height, in points. The default value is 200.

• min x←min x, max x←max x, min y←min y, max y←max y

Specify the ranges for the ' and (coordinates that are mapped to
the canvas rectangle. The default values are 0 for min x and min y,
10 for max x and max y.

• crop, no crop

Specify whether the contents should be cropped to the image
bounding rectangle. Cropping is enabled by default.

Quickly creating a graphics canvas

A convenient way to create a graphics canvas with a code block including
some of the standard attributes is by selecting “Graphics Canvas” from
the code templates menu in the top right corner of the editor window, as
shown in this screenshot:

An Invitation to MadHat and Mathematical Typesetting 180

An Invitation to MadHat and Mathematical Typesetting 181

Graphics drawing commands

To draw graphics, you include a list of graphics primitive commands
inside a ⌘graphics canvas⟪...⟫ command block. You can also
configure the behavior of a graphics primitive by including graphics
styling commands before it to modify the graphics style used for drawing
the primitive.

Here is a list of the recognized graphics primitives.

•

⌘frame҇

Draw a (stroked) frame around the canvas rectangle

•

⌘filled frame҇

Draw a filled frame

•

⌘filled stroked frame҇

Draw a filled and stroked frame

•

⌘grid⟪x spacingҔy spacing⟫

Draw a grid with the specified ' and (spacing values

An Invitation to MadHat and Mathematical Typesetting 182

•

⌘line⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2 yѼ...Ѽpoint
n xҔpoint n y⟫

Draw a line (aka polyline) connecting the specified sequence of
points

•

⌘polygon⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2 yѼ...Ѽ
point n xҔpoint n y⟫

Draw a closed polygon connecting the specified sequence of points

•

⌘filled polygon⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2
yѼ...Ѽpoint n xҔpoint n y⟫

Draw a filled polygon connecting the specified sequence of points

•

⌘filled stroked polygon⟪point 1 xҔpoint 1 yѼpoint 2
xҔpoint 2 yѼ...Ѽpoint n xҔpoint n y⟫

Draw a filled and stroked polygon connecting the specified sequence
of points

•

⌘marker⟪x coordinateҔy coordinate⟫

An Invitation to MadHat and Mathematical Typesetting 183

Draw a marker at the specified point. The marker type can be set
using the ⌘marker type⟪...⟫ command.

•

⌘circle⟪x coordinateҔy coordinateѼradius⟫

Draw a circle centered at the specified point, with the given radius

•

⌘disk⟪x coordinateҔy coordinateѼradius⟫

Draw a disk (filled circle) centered at the specified point, with the
given radius

•

⌘circle disk⟪x coordinateҔy coordinateѼradius⟫

Draw a filled, stroked circle centered at the specified point, with the
given radius

•

⌘arc⟪x coordinateҔy coordinateѼradiusѼstart angleҔ
end angle⟫

Draw a circular arc centered at the specified point, with the given
radius, start angle and end angle

•

⌘ellipse⟪x coordinateҔy coordinateѼx radiusѼy radius⟫

An Invitation to MadHat and Mathematical Typesetting 184

Draw an ellipse centered at the specified point, with the given '
and (radii

•

⌘filled ellipse⟪...⟫

Draw a filled ellipse centered at the specified point, with the given '
and (radii

•

⌘filled stroked ellipse⟪...⟫

Draw a filled, stroked ellipse centered at the specified point, with
the given ' and (radii

•

⌘rectangle⟪corner 1 xҔcorner 1 yѼcorner 2 xҔcorner 2
y⟫

Draw a rectangle whose opposing corners are the two specified
points

•

⌘filled rectangle⟪...⟫

Draw a filled rectangle whose opposing corners are the two specified
points

•

⌘filled stroked rectangle⟪...⟫

An Invitation to MadHat and Mathematical Typesetting 185

Draw a filled, stroked rectangle whose opposing corners are the two
specified points

•

⌘arrow⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2 y⟫

Draw an arrow from the specified point 1 to point 2

•

⌘bezier⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2 yѼpoint 3
xҔpoint 3 yѼpoint 4 xҔpoint 4 y⟫

⌘bézier⟪point 1 xҔpoint 1 yѼpoint 2 xҔpoint 2 yѼpoint 3
xҔpoint 3 yѼpoint 4 xҔpoint 4 y⟫

Draw a cubic Bézier curve from point 1 to point 4, with point 2 and
point 3 serving as control points

•

⌘annotation⟪x coordinateҔy coordinateѼannotation⟫

Place an annotation with arbitrary content (such as text or a
mathematical expression) with its typesetting origin at the specified
point

•

⌘centered annotation⟪x coordinateҔy coordinateѼ
annotation⟫

Place an annotation with arbitrary content (such as text or a

An Invitation to MadHat and Mathematical Typesetting 186

mathematical expression) with its center the specified point

Note. The ⌘annotation⟪...⟫ and
⌘centered annotation⟪...⟫ commands can also be used
outside of a graphics canvas. In that case the annotation point is
interpreted in document coordinates (relative to the current
typesetting point) instead of canvas coordinates, but the effect is
otherwise the same.

•

⌘curved text layout⟪curve specificationҔtext⟫

Lay out the provided text along the specified curve (entered using
standard graphics drawing commands such as ⌘line⟪...⟫,
⌘bezier⟪...⟫, ⌘circle⟪...⟫).

Animatable properties

Graphics primitives can animate their shape during a slide transition by
wrapping them in a ⌘slide fragment⟪...⟫ command and including
the optional change on transition attribute inside an attributes
block. Here is a list of the animatable properties for the different graphics
primitives.

• Animatable properties for ⌘line⟪...⟫, ⌘polygon⟪...⟫,
⌘filled polygon⟪...⟫, and ⌘filled stroked polygon⟪...⟫
commands:
points: this property should be specified as a flat list of the '-
and (-coordinates of the points of the line or polygon, in the format

pt 1 xҔpt 1 yҔpt 2 xҔpt 2 yҔ ...Ҕpt k xҔpt k y

An Invitation to MadHat and Mathematical Typesetting 187

• Animatable properties for ⌘arrow⟪...⟫ command:
start
end

• Animatable properties for ⌘rectangle⟪...⟫ command:
corner 1
corner 2

• Animatable properties for ⌘circle⟪...⟫, ⌘disk⟪...⟫→
⌘circle disk⟪...⟫ commands:
center
radius

• Animatable properties for ⌘ellipse⟪...⟫,
⌘filled ellipse⟪...⟫→ ⌘filled stroked ellipse⟪...⟫
commands:
center
x radius
y radius

• Animatable properties for ⌘arc⟪...⟫ command:
center
radius
start angle
end angle

• Animatable properties for ⌘bezier⟪...⟫ command:
point 1
point 2
point 3
point 4

See also

• Graphics canvasses

• Graphics styling commands

An Invitation to MadHat and Mathematical Typesetting 188

• Graphics pen drawing commands

• Graphics pen control commands

• Creating a slide presentation

An Invitation to MadHat and Mathematical Typesetting 189

Graphics styling commands

Graphics styling commands control the style attributes of graphics
primitives that you include in your diagram. Here are the different styling
commands.

• ⌘line thickness⟪thickness⟫

Set the line thickness to the specified thickness, in points

• ⌘marker scale⟪scale⟫

Scale markers up or down from their default size, by the specified
factor

• ⌘marker type⟪type⟫

Set the marker type. Allowed values are disk, square, diamond,
star, and triangle. The default is disk.

• ⌘stroke color⟪color argument⟫
⌘stroke colour⟪color argument⟫

Set the stroke color for stroked graphics shapes

• ⌘fill color⟪color argument⟫
⌘fill colour⟪color argument⟫

Set the fill color for filled graphics shapes

See also

• Graphics canvasses

An Invitation to MadHat and Mathematical Typesetting 190

• Graphics drawing commands

• Graphics pen drawing commands

• Graphics pen control commands

An Invitation to MadHat and Mathematical Typesetting 191

Graphics pen drawing commands

In addition to graphics primitives, the graphics environment
supports a “pen drawing” model, also known as turtle graphics. In this
model, you give drawing commands to a virtual pen that has a position
and a direction. You can tell the pen to move forward back, to rotate to
the left or right, etc.

Pen graphics commands are classified into pen dra wing commands,
described on this page, and a separate class of pen control commands
described on a separate help page.

• ⌘move to⟪xҔy⟫

Move the pen to an absolute position (' , () on the canvas. The
initial position is the center of the canvas rectangle. When the pen
is moved, the pen direction is set to the vector pointing from the
current position to the new position.

• ⌘line to⟪xҔy⟫

Stroke a line from the current pen position to an absolute position (' , (). The pen direction is updated to the vector pointing from the
current position to the new position.

• ⌘curve to⟪x1Ҕy1Ѽx2Ҕy2Ѽx3Ҕy3⟫

Stroke a cubic Bézier curve from the current pen position to the
point ('3, (3) using the specified control points ('1, (1),('2, (2).
The pen direction is updated to the tangent vector of the Bézier
curve at its endpoint.

• ⌘pen forward⟪distance⟫

Move the pen forward by a specified distance

An Invitation to MadHat and Mathematical Typesetting 192

https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics

• ⌘pen backward⟪distance⟫

Move the pen backward by a specified distance

See also

• Graphics canvasses

• Graphics drawing commands

• Graphics styling commands

• Graphics pen control commands

An Invitation to MadHat and Mathematical Typesetting 193

Graphics pen control commands

The graphics environment supports a “pen drawing” model, also
known as turtle graphics. In this model, you give drawing commands to
a virtual pen that has a position and a direction. You can tell the pen to
move forward back, to rotate to the left or right, etc.

Pen graphics commands are classified into pen dra wing commands,
described on this page, and a separate class of pen control commands
described on a separate help page.

• ⌘pen up҇

Lift the pen up (i.e., turn off drawing when the pen moves)

• ⌘pen down҇

Lower the pen (i.e., turn on drawing when the pen moves)

• ⌘pen direction⟪x�y⟫

Set the pen direction to a specified vector

• ⌘pen angle⟪angle⟫

Set the pen direction to a specified angle relative to the positive '
axis, in degrees. The initial angle is 90 degrees (that is, the pen is
turned north).

• ⌘turn pen left⟪angle⟫

Rotate the pen direction to the left by a specified angle, in degrees

• ⌘turn pen right⟪angle⟫

Rotate the pen direction to the right by a specified angle, in degrees

An Invitation to MadHat and Mathematical Typesetting 194

https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics

• ⌘turn pen north҇
⌘turn pen south҇
⌘turn pen east҇
⌘turn pen west҇
⌘turn pen northeast҇
⌘turn pen northwest҇
⌘turn pen southeast҇
⌘turn pen southwest҇

Turn the pen to the given compass direction

See also

• Graphics canvasses

• Graphics drawing commands

• Graphics styling commands

• Graphics pen drawing commands

An Invitation to MadHat and Mathematical Typesetting 195

Plotting mathematical functions

Within a graphics canvas, you can plot the graph of a mathematical
function, specified as an ordinary formula written in standard math mode
syntax, using plotting commands.

The sample code found on the documentation page of the
website shows various examples of how to use these features.

Below is the syntax for the available plotting commands.

• Plotting a function

○ ⌘plot⟪M̂⟪function in math mode⟫⟫

Plots the graph of a function. The function is assumed to be a
function of the variable name ', and ' ranges from 0 to 1.

○ ⌘plot⟪M̂⟪function in math mode⟫；var name⟫

○ ⌘plot⟪M̂⟪function in math mode⟫；a < var name < b⟫

Plots the graph of a function (in the specified variable name,
for example “'”, or “,”). If a range is provided through the
use of the notation a < var name < b⟫, the plotting
variable ranges between the specified values. Otherwise if only
the variable name is specified, the variable ranges from 0 to 1.

• Polar plots:

⌘polar plot⟪M̂⟪function in math mode⟫；a < angle var
name < b⟫

Inserts a polar plot of a function (in the specified angular variable

An Invitation to MadHat and Mathematical Typesetting 196

https://madhat.design/documentation/
https://madhat.design/documentation/
https://madhat.design/documentation/

name) as the angle ranges between the two specified values.

• Parametric plots:

⌘parametric plot⟪M̂⟪x func. in math mode⟫；M̂⟪y func. in
math mode⟫；a < var name < b⟫

Plots with parameters

When you plot a function, in the simplest example the function will
depend only on a single variable, say ', which will be the label of the
plotting variable. You can also allow your function to depend on several
variables, where one of the variables will be used as the plotting variable,
and the other variables have the meaning of parameters. The value of
the parameters needs to be specified by including an attributes block
inside the plot command. (If the value of a parameter is not specified, it
is assumed to be 0.)

As an example, you can plot the function 5sin(') + , with respect to the
variable ', giving the parameter , the value 3, by writing the code

⌘plot⟪M̂⟪5sin(x)+t⟫％	
ҙ⟪t←3⟫；％	
-10<x<10Ѿ	
ҙ⟪t←3⟫％	
⟫	

One main use case for including parameters in your functions is when you
want to create animations in which the value of a parameter is changed
continuously; this is described below.

Animating the plot range

An Invitation to MadHat and Mathematical Typesetting 197

The plot range can be animated during a slide transition, by wrapping
the plot command inside a ⌘slide fragment⟪...⟫ command and
adding an attribute animation instruction modifying the plot range
attribute. See the slide fragments help page for details on animating
attributes, and see the sample code available online for examples.

Animating plots by changing parameter values

When you include a parameter in the function you are plotting, say ,, the
label of that parameter becomes an attribute whose value can be
animated during a transition between slides on the page. See the slide
fragments help page for details on animating attributes, and see the
sample code available online for examples showing the use of these
animation options.

Notes on the formula parser and evaluator

Below are some technical notes on how the formula parser works and
what are some of its abilities as well as limitations. Understanding these
details may be useful to use the plotting features effectively.

• Calculations are done in the 64 bit “double” C data type. Functions
are evaluated using the standard C library functions. This implies
limitations on the precision and fidelity of plots.

• The formula parser recognizes the ⌘frac⟪...Ҕ...⟫ and ⌘sqrt⟪...⟫
commands; superscripts (which are interpreted as exponents); the
mathematical constants ¡ and π (where π is typed in the usual way
as pi in math mode, or can be entered directly as the symbol π in
the source editor); the brackets (,), [,], {, }, and absolute value
signs |. Brackets can also be entered using the
⌘left bracket⟪...⟫ and ⌘right bracket⟪...⟫, as described

An Invitation to MadHat and Mathematical Typesetting 198

on the brackets help page.

• The following mathematical functions are recognized: exp, log, ln,sin, cos, tan, arcsin, arccos, arctan.

• Plotting variable and parameter names can be single-letter symbols
or multi-letter symbols using Latin letters. They can also be the
names of Greek letters. The symbols ¡ and π cannot be used for
variable and parameter names since they represent the
mathematical constants.

• The formula parser supports implicit (or “implied”) multiplication,
for example interpreting “3'” as “three times '”, and treats the
binary operators + and − in the usual way as unary operators
when they appear at the beginning of a formula or subformula
(such as a bracketed expression, or inside a square root).

• The parser respects the standard conventions on order of operations
(also known as operator precedence). Implicit multiplication is
assigned the same precedence as explicit multiplication and
division, so that the expression 1 / 2' is parsed from left to right
and evaluates to “one half times '”.

• The vertical bar symbol “|”, interpreted as an absolute value
bracket, is used both as an opening (left) and closing (right)
bracket. To resolve possible ambiguities that may arise as a result in
parsing an expression involving such symbols, vertical bars are
processed by the formula parser in the following way: if a vertical
bar follows a binary operator or a left bracket of any type, or
appears at the beginning of the formula (or subformla), it is
interpreted as an opening bracket; otherwise, if the vertical bar can
be interpreted as a closing bracket in a way that satisfies the
matching rules for brackets (i.e., it can be paired in a consistent
way with an already scanned vertical bar that was interpreted as an
opening bracket), it is interpreted as a closing bracket; and finally,

An Invitation to MadHat and Mathematical Typesetting 199

if such a matching does not apply, the vertical bar is interpreted as
an opening bracket.

• When entering vertical bars to denote absolute value operations,
you can override the behavior described above by explicitly marking
a vertical bar as a left bracket or a right bracket, using the
⌘left bracket⟪|⟫ and ⌘right bracket⟪|⟫ commands.

• The rules described above make it possible to successfully parse
some mathematical expressions which nonetheless may be
ambiguous in how they are interpreted by humans. This ambiguity
is related to two aspects of the structure of mathematical formulas
on which there is no universal agreement regarding how they are to
be interpreted:

○ Expressions such as 1 / 2 × ' and 1 / 2' are understood as “1 /(2')” by some people and (1 / 2) ' by other people. Which
interpretation is more “correct” has been the source of some
debate. Technically, the issue is whether a multiplication
operator (and even more so the implicit multiplication
operator) should be considered as having a higher precedence
than the division operator, or the same precedence.

○ An expression such as |'| (|3| lends itself to two possible
interpretations, either as “[absolute value of '] times (times
[absolute value of ']” or as “absolute value of [' times (the
absolute value of () times 3”. In ordinary mathematical
writing, the ambiguity is sometimes resolved by using vertical
bars of different heights when an expression involves nested
absolute value operations, but the formula parser does not
consider this type of information, instead applying the rules
mentioned above.

The recommendation for formulas within is to be aware of
these sources of ambiguities and to avoid plotting expressions

An Invitation to MadHat and Mathematical Typesetting 200

https://people.math.harvard.edu/~knill/pedagogy/ambiguity/index.html

containing them (which can easily be done by adding parentheses)
even if they define expressions that can be successfully plotted, to
avoid confusion.

An Invitation to MadHat and Mathematical Typesetting 201

Printing and PDF exporting

To print a notebook, select the Print option from the File menu of the
main menu.

To export a notebook as a PDF, select the Export to PDF option from
the File menu.

An Invitation to MadHat and Mathematical Typesetting 202

Exporting to LaTeX

enables exporting the content of a notebook to the LaTeX file
format.

To export a notebook to a LaTeX file, select the Export to LaTeX option
from the File menu.

Caveats

The design of the language differs sufficiently from that of LaTeX
that perfect conversion from one language to another seems impractical.
When you export a notebook into LaTeX, you should keep in mind the
following caveats:

An Invitation to MadHat and Mathematical Typesetting 203

https://www.latex-project.org

• The conversion from to LaTeX code is not completely
faithful. Certain formatting instructions are not converted, as well
as graphics commands, slide commands, attributes blocks, and
other language constructs that do not map in a simple way
to LaTeX commands. Text, mathematical symbols and other
‘‘normal’’ content will be converted correctly, but it is a good idea
to inspect your exported LaTeX code after exporting and make
appropriate manual adjustments as needed to get the LaTeX
document looking the way you intended.

• Math displays in the notebook code are exported to a
LaTeX.

\begin{align*} ... \end{align*}

block. However, ’s typesetting algorithm differs from the
LaTeX align* environment in that the content is automatically
broken up into multiple lines and each line is aligned based on the
position of equal signs and other binary relations. The LaTeX
conversion algorithm does not attempt to reproduce these features,
so you may need to insert LaTeX alignment and linebreaking
symbols manually in the exported file.

• LaTeX does not support the Unicode standard. ’s
conversion algorithm will replace Greek letters and standard
mathematical symbols in your notebook code with the correct
LaTeX commands (e.g., α will be converted to \alpha), but any
other unsupported Unicode symbols in your code will be output
verbatim into the exported LaTeX file and then lead to a
compilation error when you try to compile the file with the LaTeX
typesetting engine. Manual adjustment will be necessary to fix the
problem.

An Invitation to MadHat and Mathematical Typesetting 204

Themes and the themes editor

Syntax highlighting

The editor window applies syntax highlighting to your code so as
to provide easy visual cues for the syntactical roles played by different
parts of your content. This facilitates easy reading and editing of
language content.

The collection of colors constituting the settings for syntax highlighting,
together with the choice of a font and font size in which to view your
code, is referred to as a theme. provides pre-installed themes
you can select for your content editing, and a themes editor that
enables you to define new themes to suit your personal preferences.
Examples of syntax highlighting in the pre-installed themes are shown
below:

An Invitation to MadHat and Mathematical Typesetting 205

(a) A code snippet highlighted using the “Light” theme
.

(b) A code snippet highlighted using the “Dark” theme

The themes editor

The themes editor offers an intuitive interface to create and edit new
themes. It is accessed throught the Preferences window,
accessible using the standard Mac keyboard shortcut (“Command-,”), or
from the File menu. Here is a screenshot of the themes editor:

An Invitation to MadHat and Mathematical Typesetting 206

An Invitation to MadHat and Mathematical Typesetting 207

List of key substitutions

Here is a list of key substitutions implemented in the editor window to
facilitate entering ’s special symbols.

• The keystroke “\” is substituted with a command symbol ⌘.

• The keystroke Option-“\” produces an ordinary “\” character.

• The keystroke “$” is substituted with a math mode shift command:
M̂⟪⟫, or M̂: if the cursor is positioned at the beginning of a
paragraph.

• The keystroke Option-“$” produces an ordinary “$” character.

• The keystroke “.” (an ordinary period) is substituted with a close
command character ҇ if it is entered when entering a command
name is in progress.

• The keystroke “;” (a semicolon) is substituted with a primary list
delimiter Ҕ.

• The keystroke Option-“;” produces an ordinary “;” character.

• The keystroke “#” is substituted with a secondary list delimiter Ҕ.

• The keystroke Option-“#” produces an ordinary ’#’ character.

• The keystroke “[” is substituted with an “open block” ⟪ symbol.

• The keystroke Option-“[” produces an ordinary “[” character.

• The keystroke “]” is substituted with an “close block” ⟫ symbol.

• The keystroke Option-“]” produces an ordinary “]” character.

An Invitation to MadHat and Mathematical Typesetting 208

• The keystroke “%” is substituted with a comment symbol Ѿ.

• The keystroke Option-“%” produces an ordinary “%” character.

• The keystroke “@” is substituted with an attributes symbol ҙ.

• The keystroke Option-“@” produces an ordinary “@” character.

• The keystroke Option-“/” produces an assignment symbol ←

An Invitation to MadHat and Mathematical Typesetting 209

version history and changelog

• Version 1.1.1 (April 20, 2022) additions:

○ Miscellaneous bug fixes

○ Added notebook configuration commands to customize the
page geometry

• Version 1.1 (January 17, 2022) additions:

○ Miscellaneous bug fixes

○ Added a Preferences window with a new editor for syntax
highlighting themes

○ Added an Export To LaTeX feature

○ Added notebook configuration options to allow customization
of paragraph spacings, line spacing, and paragraph indent.

○ Improved formatting of boxes (content enclosed between
⌘begin box҇ and ⌘end box҇ commands)

○ Improved pagination algorithm for exporting notebooks to
PDF; pagination can now occur between successive lines of a
paragraph

○ Expanded and improved in-app help pages

• Version 1.0.2 (Dec. 4, 2021) additions:

○ Miscellaneous bug fixes

○ Improvements to in-app help pages

○ Added customization options for exported PDFs: page

An Invitation to MadHat and Mathematical Typesetting 210

headers, page footers, page numbers and more

○ Added customization options for header and link styles and
an option to define additional custom styles

○ Improved support for macOS’s Dark Mode

• Version 1.0.1 (Nov. 13, 2021) additions:

○ Bug fixes and improvements to app performance

○ Improvements to in-app help pages: help pages improved;
clicking on code snippets copies code to the clipboard

○ Improvements to code templates

○ Improvements to PDF export feature: notebook intralinks are
now exported correctly; exported PDF now includes a table of
contents

• Version 1.0 (Nov. 3, 2021): initial release

An Invitation to MadHat and Mathematical Typesetting 211

Index of commands and keywords

This page shows an automatically generated index of all
commands and math keywords. Click on a command name to go to its
help page.

• Package standard (6 modules, 24 clusters, 381 commands):

○ Module graphics (5 clusters, 56 commands):

▪ Cluster graphics-graphics (4 commands):

→ ⌘graphics canvas

→ ⌘image

→ ⌘madhat logo

→ ⌘video

▪ Cluster graphics-primitives (28 commands):

→ ⌘frame

→ ⌘filled frame

→ ⌘filled stroked frame

→ ⌘axes

→ ⌘grid

→ ⌘line

→ ⌘polygon

→ ⌘filled polygon

An Invitation to MadHat and Mathematical Typesetting 212

→ ⌘filled stroked polygon

→ ⌘marker

→ ⌘circle

→ ⌘disk

→ ⌘circle disk

→ ⌘arc

→ ⌘ellipse

→ ⌘filled ellipse

→ ⌘filled stroked ellipse

→ ⌘rectangle

→ ⌘filled rectangle

→ ⌘filled stroked rectangle

→ ⌘arrow

→ ⌘bezier

→ ⌘plot

→ ⌘parametric plot

→ ⌘polar plot

→ ⌘annotation

→ ⌘centered annotation

→ ⌘curved text layout

▪ Cluster graphics-penprimitives (5 commands):

An Invitation to MadHat and Mathematical Typesetting 213

→ ⌘move to

→ ⌘line to

→ ⌘curve to

→ ⌘pen forward

→ ⌘pen backward

▪ Cluster graphics-penformatting (14 commands):

→ ⌘pen direction

→ ⌘pen angle

→ ⌘turn pen left

→ ⌘turn pen right

→ ⌘pen up

→ ⌘pen down

→ ⌘turn pen north

→ ⌘turn pen south

→ ⌘turn pen east

→ ⌘turn pen west

→ ⌘turn pen northeast

→ ⌘turn pen northwest

→ ⌘turn pen southeast

→ ⌘turn pen southwest

▪ Cluster graphics-formatting (5 commands):

An Invitation to MadHat and Mathematical Typesetting 214

→ ⌘line thickness

→ ⌘marker type

→ ⌘marker scale

→ ⌘stroke color

→ ⌘fill color

○ Module notebook (1 cluster, 17 commands):

▪ Cluster notebook-notebook (17 commands):

→ ⌘begin box

→ ⌘end box

→ ⌘box divider

→ ⌘box frame thickness

→ ⌘⌘notebook title

→ ⌘⌘notebook author

→ ⌘⌘exported page header

→ ⌘⌘exported page footer

→ ⌘⌘exported header and footer range

→ ⌘⌘exported page number

→ ⌘⌘define style

→ ⌘⌘paragraph spacings matrix

→ ⌘⌘
paragraph before and after spacings

An Invitation to MadHat and Mathematical Typesetting 215

→ ⌘⌘top of page preparagraph spacings

→ ⌘⌘base paragraph spacing

→ ⌘⌘line spacing

→ ⌘⌘paragraph indent

○ Module misc (2 clusters, 20 commands):

▪ Cluster misc-misc (11 commands):

→ ⌘subscript

→ ⌘superscript

→ ⌘subsuperscript

→ ⌘multiscript

→ ⌘table

→ ⌘math table

→ ⌘matrix

→ ⌘continued fraction

→ ⌘left right line

→ ⌘left center right line

→ ⌘checkbox

▪ Cluster misc-developer (9 commands):

→ ⌘debug

→ ⌘test expression

→ ⌘paragraph

An Invitation to MadHat and Mathematical Typesetting 216

→ ⌘fillertext

→ ⌘mhatsymbol

→ ⌘thatsymbol

→ ⌘commandsymbol

→ ⌘openblock

→ ⌘closeblock

○ Module basic (2 clusters, 13 commands):

▪ Cluster basic-basic (5 commands):

→ ⌘space

→ ⌘newline

→ ⌘vertical skip

→ ⌘glyph

→ ⌘ℎ

▪ Cluster basic-info (8 commands):

→ ⌘package info

→ ⌘package author

→ ⌘package modules

→ ⌘package clusters

→ ⌘package commands

→ ⌘module commands

→ ⌘cluster commands

An Invitation to MadHat and Mathematical Typesetting 217

→ ⌘module clusters

○ Module math (10 clusters, 205 commands):

▪ Cluster math-functions (11 commands):

→ cos

→ sin

→ tan

→ sec

→ cosec

→ arccos

→ arcsin

→ arctan

→ exp

→ log

→ ln

▪ Cluster math-differentials (49 commands):

→ partial

→ dalpha

→ dbeta

→ dgamma

→ ddelta

→ depsilon

An Invitation to MadHat and Mathematical Typesetting 218

→ dzeta

→ deta

→ dtheta

→ diota

→ dkappa

→ dlambda

→ dmu

→ dnu

→ dxi

→ domicron

→ dpi

→ drho

→ dsigma

→ dtau

→ dupsilon

→ dphi

→ dchi

→ dpsi

→ domega

→ dAlpha

→ dBeta

An Invitation to MadHat and Mathematical Typesetting 219

→ dGamma

→ dDelta

→ dEpsilon

→ dZeta

→ dEta

→ dTheta

→ dIota

→ dKappa

→ dLambda

→ dMu

→ dNu

→ dXi

→ dOmicron

→ dPi

→ dRho

→ dSigma

→ dTau

→ dUpsilon

→ dPhi

→ dChi

→ dPsi

An Invitation to MadHat and Mathematical Typesetting 220

→ dOmega

▪ Cluster math-extensible symbols (15 commands):

→ ⌘overbrace

→ ⌘overbracket

→ ⌘underbrace

→ ⌘underbracket

→ ⌘overparenthesis

→ ⌘underparenthesis

→ ⌘overtortoise

→ ⌘undertortoise

→ ⌘annotated equal

→ ⌘annotated right arrow

→ ⌘annotated double right arrow

→ ⌘annotated left arrow

→ ⌘annotated double left arrow

→ ⌘annotated left right arrow

→ ⌘annotated double left right arrow

▪ Cluster math-decorations (8 commands):

→ ⌘hat

→ ⌘tilde

→ ⌘overdot

An Invitation to MadHat and Mathematical Typesetting 221

→ ⌘double dot

→ ⌘triple dot

→ ⌘vector

→ ⌘overbar

→ ⌘underbar

▪ Cluster math-greek (48 commands):

→ alpha

→ beta

→ gamma

→ delta

→ epsilon

→ zeta

→ eta

→ theta

→ iota

→ kappa

→ lambda

→ mu

→ nu

→ xi

→ omicron

An Invitation to MadHat and Mathematical Typesetting 222

→ pi

→ rho

→ sigma

→ tau

→ upsilon

→ phi

→ chi

→ psi

→ omega

→ Alpha

→ Beta

→ Gamma

→ Delta

→ Epsilon

→ Zeta

→ Eta

→ Theta

→ Iota

→ Kappa

→ Lambda

→ Mu

An Invitation to MadHat and Mathematical Typesetting 223

→ Nu

→ Xi

→ Omicron

→ Pi

→ Rho

→ Sigma

→ Tau

→ Upsilon

→ Phi

→ Chi

→ Psi

→ Omega

▪ Cluster math-binary relations (17 commands):

→ ⌘leftarrow

→ ⌘rightarrow

→ uparrow

→ downarrow

→ ⌘leftrightarrow

→ ⌘doublerightarrow

→ ⌘doubleleftarrow

→ ⌘doubleleftrightarrow

An Invitation to MadHat and Mathematical Typesetting 224

→ mapsto

→ approx

→ cong

→ sim

→ ⌘elementof

→ subset

→ subseteq

→ superset

→ superseteq

▪ Cluster math-special symbols (7 commands):

→ ⌘infinity

→ naturalnumbers

→ integers

→ rationals

→ reals

→ complexnumbers

→ hbar

▪ Cluster math-limits operators (21 commands):

→ ⌘smallintegral

→ ⌘bigintegral

→ ⌘smallcontourintegral

An Invitation to MadHat and Mathematical Typesetting 225

→ ⌘bigcontourintegral

→ smallsum

→ bigsum

→ ⌘smallproduct

→ ⌘bigproduct

→ ⌘nabla

→ ⌘limit

→ ⌘minimum

→ ⌘maximum

→ ⌘infimum

→ ⌘supremum

→ ⌘determinant

→ ⌘integral

→ ⌘contourintegral

→ ⌘doubleintegral

→ ⌘tripleintegral

→ sum

→ ⌘product

▪ Cluster math-binary operators (21 commands):

→ intersection

→ bigintersection

An Invitation to MadHat and Mathematical Typesetting 226

→ union

→ bigunion

→ ⌘conjunction

→ ⌘bigconjunction

→ ⌘disjunction

→ ⌘bigdisjunction

→ times

→ dividedby

→ plus

→ minus

→ plusminus

→ minusplus

→ convolve

→ dot

→ fatdot

→ centerdots

→ verticaldots

→ sedots

→ nedots

▪ Cluster math-basic math (8 commands):

→ ⌘fraction

An Invitation to MadHat and Mathematical Typesetting 227

→ ⌘quasifraction

→ ⌘binomial

→ ⌘squareroot

→ ⌘left bracket

→ ⌘right bracket

→ ⌘middle bracket

→ ⌘close bracket

○ Module formatting (4 clusters, 70 commands):

▪ Cluster formatting-color (6 commands):

→ ⌘named colors

→ ⌘color

→ ⌘highlight color

→ ⌘page background color

→ ⌘box background color

→ ⌘box frame color

▪ Cluster formatting-style (55 commands):

→ ⌘font size

→ ⌘font

→ ⌘edit font

→ ⌘math font

→ ⌘font cluster

An Invitation to MadHat and Mathematical Typesetting 228

→ ⌘bold on

→ ⌘bold off

→ ⌘bold text

→ ⌘italic on

→ ⌘italic off

→ ⌘italic text

→ ⌘underline on

→ ⌘underline off

→ ⌘underline

→ ⌘strikethrough on

→ ⌘strikethrough off

→ ⌘strikethrough

→ ⌘highlight on

→ ⌘highlight off

→ ⌘highlight

→ ⌘styled

→ ⌘lowercase

→ ⌘uppercase

→ ⌘redact

→ ⌘obfuscate

→ ⌘bold math

An Invitation to MadHat and Mathematical Typesetting 229

→ ⌘italic math

→ ⌘blackboard math

→ ⌘calligraphy math

→ ⌘fraktur math

→ ⌘mono math

→ ⌘sans math

→ ⌘roman math

→ ⌘suppress paragraph indent

→ ⌘new paragraph

→ ⌘⌘page width

→ ⌘⌘page height

→ ⌘⌘page size

→ ⌘⌘left margin

→ ⌘⌘right margin

→ ⌘⌘top margin

→ ⌘⌘exported top margin

→ ⌘⌘bottom margin

→ ⌘⌘exported bottom margin

→ ⌘⌘exported header offset

→ ⌘⌘exported footer offset

→ ⌘header

An Invitation to MadHat and Mathematical Typesetting 230

→ ⌘subheader

→ ⌘subsubheader

→ ⌘paragraph header

→ ⌘superheader

→ ⌘hyperlink

→ ⌘intralink

→ ⌘help page link

→ ⌘command help link

▪ Cluster formatting-lists (6 commands):

→ ⌘begin list

→ ⌘end list

→ ⌘list item

→ ⌘num item

→ ⌘checkbox item

→ ⌘collapse here

▪ Cluster formatting-transitions (3 commands):

→ ⌘pause

→ ⌘next page in

→ ⌘slide fragment

An Invitation to MadHat and Mathematical Typesetting 231

	Book cover page
	Copyright page
	Table of Contents
	Preface
	Part I cover page
	Chapter 1: Introduction
	Chapter 2: Design principles
	Chapter 3: Future plans
	Chapter 4: Summary
	Part II cover page
	About MadHat
	About this guide
	MadHat Help
	Introduction
	List of special symbols
	Typing text
	Spaces and newlines
	Typing mathematics
	Blocks
	Comments
	Commands
	Attributes
	Delimited lists
	Notebook configuration
	Notebook metadata
	Notebook page geometry
	Notebook styles
	Notebook line and paragraph spacing
	Notebook PDF export settings
	Paragraphs
	Styling text
	Bold text
	Italic text
	Text underlining
	Text strikethrough
	Text highlighting
	Text substitutions
	Setting fonts
	Setting the font size
	Colors
	Headers and subheaders
	Lists and outlining
	Tables
	Boxes
	Links
	Slides
	Slide transitions
	Slide fragments
	Subscripts and superscripts
	Mathematical font variants
	Fractions
	Square roots
	Operators
	Greek letters
	Differentials
	Brackets
	Horizontal brackets
	Extensible arrows and relations
	Special mathematical symbols
	Binary relations
	Binary operators
	Matrices
	Mathematical decorations
	Images
	Videos
	The media library
	Graphics canvasses
	Graphics drawing
	Graphics styling
	Graphics pen drawing
	Graphics pen control
	Graphics plotting
	Printing and PDF exporting
	Exporting to LaTeX
	Themes and the themes editor
	List of key substitutions
	Changelog
	Command and keyword index

